Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 2.1:2a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (08:10, 23 September 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
 
-
<!--center> [[Image:2_1_2a.gif]] </center-->
 
First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket,
First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket,
-
<math>
+
{{Displayed math||<math>\begin{align}
-
\qquad
+
-
\begin{align}
+
(x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\
(x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\
&= x^2-5x-4x+20-(6x^2-9x)\\
&= x^2-5x-4x+20-(6x^2-9x)\\
-
&=x^2-5x-4x+20-6x^2+9x
+
&=x^2-5x-4x+20-6x^2+9x\,\textrm{.}
-
\end{align}
+
\end{align}</math>}}
-
</math>
+
-
Then, gather together <math>x^2-, \, x- </math> and the constant terms and simplify
+
Then, gather together ''x''²-, ''x''- and the constant terms and simplify
-
<math>
+
{{Displayed math||<math>\begin{align}
-
\qquad
+
-
\begin{align}
+
\phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\
\phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\
&= -5x^2+0+20\\
&= -5x^2+0+20\\
-
&= -5x^2+20
+
&= \rlap{-5x^2+20\,\textrm{.}}\phantom{x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)}
-
\end{align}
+
\end{align}</math>}}
-
</math>
+
-
 
+
-
{{NAVCONTENT_STOP}}
+

Current revision

First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket,

(x4)(x5)3x(2x3)=xxx54x4(5)(3x2x3x3)=x25x4x+20(6x29x)=x25x4x+206x2+9x.

Then, gather together x²-, x- and the constant terms and simplify

=(x26x2)+(5x4x+9x)+20=5x2+0+20=5x2+20.