Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 2.1:2b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (08:15, 23 September 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
 
-
<!--center> [[Bild:2_1_2b.gif]] </center-->
 
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
-
<math>
+
{{Displayed math||<math>\begin{align}
-
\qquad
+
-
\begin{align}
+
(1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\
(1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\
-
&=1+15x-5x-75x^2
+
&=1+15x-5x-75x^2\\
-
\end{align}
+
&=1+10x-75x^2\,\textrm{.}
-
</math>
+
\end{align}</math>}}
-
As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x.</math>
+
As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x</math>,
-
<math>
+
{{Displayed math||<math>\begin{align}
-
\qquad
+
-
\begin{align}
+
3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\
3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\
&=3(4-25x^2)\\
&=3(4-25x^2)\\
-
&=12-75x^2
+
&=12-75x^2\,\textrm{.}
-
\end{align}
+
\end{align}</math>}}
-
</math>
+
All together, we obtain
All together, we obtain
-
<math> \qquad (1-5x)(1+15x)-3(2-5x)(2+5x) </math>
+
{{Displayed math||<math>\begin{align}
-
 
+
(1-5x)(1+15x)-3(2-5x)(2+5x) &= (1+10x-75x^2)-(12-75x^2)\\
-
<math>
+
-
\qquad
+
-
\begin{align}
+
-
\phantom{3(2-5x)(2+5x)} &= (1+10x-75x^2)-(12-75x^2)\\
+
&= 1+10x-75x^2-12+75x^2\\
&= 1+10x-75x^2-12+75x^2\\
&= 1-12+10x-75x^2+75x^2\\
&= 1-12+10x-75x^2+75x^2\\
-
&=-11+10x
+
&=-11+10x\,\textrm{.}
-
\end{align}
+
\end{align}</math>}}
-
</math>
+
-
 
+
-
{{NAVCONTENT_STOP}}
+

Current revision

We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket

(15x)(1+15x)=11+115x5x15x15x=1+15x5x75x2=1+10x75x2.

As for the second expression, we can use the conjugate rule (ab)(a+b)=a2b2 where a=2 and b=5x,

3(25x)(2+5x)=322(5x)2=3(425x2)=1275x2.

All together, we obtain

(15x)(1+15x)3(25x)(2+5x)=(1+10x75x2)(1275x2)=1+10x75x212+75x2=112+10x75x2+75x2=11+10x.