Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 2.1:6b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (11:35, 23 September 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
The lowest common denominator for the three terms is
+
The lowest common denominator for the three terms is <math>(x-2)(x+3)</math> and we expand each term so that all terms have the same denominator
-
<math>\left( x-2 \right)\left( x+3 \right)</math>
+
-
and we expand each term so that all terms have the same denominator:
+
 +
{{Displayed math||<math>\begin{align}
 +
\frac{x}{x-2}+\frac{x}{x+3}-2
 +
&= \frac{x}{x-2}\cdot\frac{x+3}{x+3} + \frac{x}{x+3}\cdot\frac{x-2}{x-2} - 2\cdot\frac{(x-2)(x+3)}{(x-2)(x+3)}\\[5pt]
 +
&= \frac{x(x+3)+x(x-2)-2(x-2)(x+3)}{(x-2)(x+3)}\\[5pt]
 +
&= \frac{x^{2}+3x+x^{2}-2x-2(x^{2}+3x-2x-6)}{(x-2)(x+3)}\\[5pt]
 +
&= \frac{x^{2}+3x+x^{2}-2x-2x^{2}-6x+4x+12}{(x-2)(x+3)}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Now, collect the terms in the numerator
-
& \frac{x}{x-2}+\frac{x}{x+3}-2=\frac{x}{x-2}\centerdot \frac{x+3}{x+3}+\frac{x}{x+3}\centerdot \frac{x-2}{x-2}-2\centerdot \frac{\left( x-2 \right)\left( x+3 \right)}{\left( x-2 \right)\left( x+3 \right)} \\
+
-
& =\frac{x\left( x+3 \right)+x\left( x-2 \right)-2\left( x-2 \right)\left( x+3 \right)}{\left( x-2 \right)\left( x+3 \right)} \\
+
-
& =\frac{x^{2}+3x+x^{2}-2x-2\left( x^{2}+3x-2x-6 \right)}{\left( x-2 \right)\left( x+3 \right)} \\
+
-
& =\frac{x^{2}+3x+x^{2}-2x-2x^{2}-6x+4x+12}{\left( x-2 \right)\left( x+3 \right)} \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
\frac{x}{x-2}+\frac{x}{x+3}-2 &= \frac{(x^{2}+x^{2}-2x^{2})+(3x-2x-6x+4x)+12}{(x-2)(x+3)}\\[5pt]
 +
&= \frac{-x+12}{(x-2)(x+3)}\,\textrm{.}
 +
\end{align}</math>}}
-
Now, collect together the terms in the numerator:
+
Note: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \frac{x}{x-2}+\frac{x}{x+3}-2=\frac{\left( x^{2}+x^{2}-2x^{2} \right)+\left( 3x-2x-6x+4x \right)+12}{\left( x-2 \right)\left( x+3 \right)} \\
+
-
& =\frac{-x+12}{\left( x-2 \right)\left( x+3 \right)} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
NOTE: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.
+

Current revision

The lowest common denominator for the three terms is (x2)(x+3) and we expand each term so that all terms have the same denominator

xx2+xx+32=xx2x+3x+3+xx+3x2x22(x2)(x+3)(x2)(x+3)=(x2)(x+3)x(x+3)+x(x2)2(x2)(x+3)=(x2)(x+3)x2+3x+x22x2(x2+3x2x6)=(x2)(x+3)x2+3x+x22x2x26x+4x+12.

Now, collect the terms in the numerator

xx2+xx+32=(x2)(x+3)(x2+x22x2)+(3x2x6x+4x)+12=x+12(x2)(x+3).

Note: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.