Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 2.1:6b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_6b.gif </center> {{NAVCONTENT_STOP}})
Current revision (11:35, 23 September 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The lowest common denominator for the three terms is <math>(x-2)(x+3)</math> and we expand each term so that all terms have the same denominator
-
<center> [[Bild:2_1_6b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\frac{x}{x-2}+\frac{x}{x+3}-2
 +
&= \frac{x}{x-2}\cdot\frac{x+3}{x+3} + \frac{x}{x+3}\cdot\frac{x-2}{x-2} - 2\cdot\frac{(x-2)(x+3)}{(x-2)(x+3)}\\[5pt]
 +
&= \frac{x(x+3)+x(x-2)-2(x-2)(x+3)}{(x-2)(x+3)}\\[5pt]
 +
&= \frac{x^{2}+3x+x^{2}-2x-2(x^{2}+3x-2x-6)}{(x-2)(x+3)}\\[5pt]
 +
&= \frac{x^{2}+3x+x^{2}-2x-2x^{2}-6x+4x+12}{(x-2)(x+3)}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Now, collect the terms in the numerator
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{x}{x-2}+\frac{x}{x+3}-2 &= \frac{(x^{2}+x^{2}-2x^{2})+(3x-2x-6x+4x)+12}{(x-2)(x+3)}\\[5pt]
 +
&= \frac{-x+12}{(x-2)(x+3)}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Note: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.

Current revision

The lowest common denominator for the three terms is (x2)(x+3) and we expand each term so that all terms have the same denominator

xx2+xx+32=xx2x+3x+3+xx+3x2x22(x2)(x+3)(x2)(x+3)=(x2)(x+3)x(x+3)+x(x2)2(x2)(x+3)=(x2)(x+3)x2+3x+x22x2(x2+3x2x6)=(x2)(x+3)x2+3x+x22x2x26x+4x+12.

Now, collect the terms in the numerator

xx2+xx+32=(x2)(x+3)(x2+x22x2)+(3x2x6x+4x)+12=x+12(x2)(x+3).

Note: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.