Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 2.2:3b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.2:3b moved to Solution 2.2:3b: Robot: moved page)
Current revision (07:40, 24 September 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
First, we move all the terms over to the left-hand side,
-
<center> [[Image:2_2_3b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\frac{4x}{4x-7}-\frac{1}{2x-3}-1=0\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:2_2_3b-2(2).gif]] </center>
+
Then, we multiply the top and bottom of all three terms by appropriate factors so that they have the same common denominator, in the following way,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\frac{4x}{4x-7}\cdot\frac{2x-3}{2x-3} - \frac{1}{2x-3}\cdot\frac{4x-7}{4x-7} - \frac{(2x-3)(4x-7)}{(2x-3)(4x-7)} = 0</math>}}
 +
 
 +
and so that we can rewrite the left-hand side giving
 +
 
 +
{{Displayed math||<math>\frac{4x(2x-3) - (4x-7) - (2x-3)(4x-7)}{(2x-3)(4x-7)}=0\,\textrm{.}</math>}}
 +
 
 +
We expand the numerator
 +
 
 +
{{Displayed math||<math>\frac{8x^{2}-12x-(4x-7)-(8x^{2}-14x-12x+21)}{(2x-3)(4x-7)} = 0</math>}}
 +
 
 +
and simplify
 +
 
 +
{{Displayed math||<math>\frac{10x-14}{(2x-3)(4x-7)}=0\,\textrm{.}</math>}}
 +
 
 +
This equation is satisfied when the numerator is zero (provided the denominator is not also zero) and this happens when
 +
 
 +
{{Displayed math||<math>10x-14=0\,,</math>}}
 +
 
 +
which gives <math>x=7/5\,</math>.
 +
 
 +
It can easily happen that we calculate incorrectly, so we check that the answer <math>x=7/5</math> satisfies the equation,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\text{LHS } &= \frac{4\cdot\frac{7}{5}}{4\cdot\frac{7}{5}-7} - \frac{1}{2\cdot\frac{7}{5}-3}
 +
= \{\,\text{multiply top and bottom by 5}\,\}\\[5pt]
 +
&= \frac{4\cdot\frac{7}{5}}{4\cdot\frac{7}{5}-7}\cdot\frac{5}{5} - \frac{1}{2\cdot \frac{7}{5}-3}\cdot\frac{5}{5}
 +
= \frac{4\cdot 7}{4\cdot 7-7\cdot 5}-\frac{5}{2\cdot 7-3\cdot 5}\\[5pt]
 +
&= \frac{4}{4-5}-\frac{5}{14-15}
 +
= -4-(-5) = 1 = \text{RHS.}
 +
\end{align}</math>}}

Current revision

First, we move all the terms over to the left-hand side,

4x4x712x31=0.

Then, we multiply the top and bottom of all three terms by appropriate factors so that they have the same common denominator, in the following way,

4x4x72x32x312x34x74x7(2x3)(4x7)(2x3)(4x7)=0

and so that we can rewrite the left-hand side giving

(2x3)(4x7)4x(2x3)(4x7)(2x3)(4x7)=0.

We expand the numerator

(2x3)(4x7)8x212x(4x7)(8x214x12x+21)=0

and simplify

10x14(2x3)(4x7)=0.

This equation is satisfied when the numerator is zero (provided the denominator is not also zero) and this happens when

10x14=0

which gives x=75.

It can easily happen that we calculate incorrectly, so we check that the answer x=75 satisfies the equation,

LHS =457457712573=multiply top and bottom by 5=4574577551257355=47477552735=44551415=4(5)=1=RHS.