Solution 2.2:3c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_2_3c-1(3).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:2_2_3c-2(3).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}...)
Current revision (08:11, 24 September 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Start by rewriting the terms on the left-hand side as one term having a common denominator
-
<center> [[Bild:2_2_3c-1(3).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
-
{{NAVCONTENT_START}}
+
\frac{1}{x-1}-\frac{1}{x+1} &= \frac{1}{x-1}\cdot\frac{x+1}{x+1} - \frac{1}{x+1}\cdot\frac{x-1}{x-1}\\[5pt]
-
<center> [[Bild:2_2_3c-2(3).gif]] </center>
+
&= \frac{x+1}{(x-1)(x+1)} - \frac{x-1}{(x-1)(x+1)}\\[5pt]
-
{{NAVCONTENT_STOP}}
+
&= \frac{(x+1)-(x-1)}{(x-1)(x+1)}\\[5pt]
-
{{NAVCONTENT_START}}
+
&= \frac{2}{(x-1)(x+1)}\,\textrm{.}
-
<center> [[Bild:2_2_3c-3(3).gif]] </center>
+
\end{align}</math>}}
-
{{NAVCONTENT_STOP}}
+
 
 +
If we also write <math>3x-3=3(x-1)</math>, the equation can be rewritten as
 +
 
 +
{{Displayed math||<math>\frac{2}{(x-1)(x+1)}\bigl(x^{2}+\tfrac{1}{2}\bigr) = \frac{6x-1}{3(x-1)}\,\textrm{.}</math>}}
 +
 
 +
Because <math>x=1</math> cannot be a solution to the equation, the factor
 +
<math>x-1</math> can be removed from the denominator of both sides (i.e. actually, we multiply both sides by <math>x-1</math> and then eliminate it)
 +
 
 +
{{Displayed math||<math>\frac{2}{x+1}\bigl(x^{2}+\tfrac{1}{2}\bigr) = \frac{6x-1}{3}\,\textrm{.}</math>}}
 +
 
 +
Then, both sides are multiplied by 3 and <math>x+1</math>, so that we get an equation without any denominators
 +
 
 +
{{Displayed math||<math>6\bigl(x^{2}+\tfrac{1}{2}\bigr) = (6x-1)(x+1)\,\textrm{.}</math>}}
 +
 
 +
Expanding both sides
 +
 
 +
{{Displayed math||<math>6x^{2}+3=6x^{2}+5x-1\,\textrm{.}</math>}}
 +
 
 +
The ''x''² terms cancel each other out and we obtain a first-order equation,
 +
 
 +
{{Displayed math||<math>3=5x-1\,,</math>}}
 +
 
 +
which has the solution
 +
 
 +
{{Displayed math||<math>x=\frac{4}{5}\,\textrm{.}</math>}}
 +
 
 +
We check whether we have calculated correctly by substituting <math>x=4/5</math> into the original equation,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\text{LHS} &= \biggl(\frac{1}{\frac{4}{5}-1}-\frac{1}{\frac{4}{5}+1}\biggr)\bigl( \bigl(\tfrac{4}{5}\bigr)^{2}+\tfrac{1}{2}\bigr)
 +
= \biggl(\frac{1}{-\frac{1}{5}}-\frac{1}{\frac{9}{5}}\biggr)\bigl(
 +
\tfrac{16}{25}+\tfrac{1}{2}\bigr)\\[5pt]
 +
&= \bigl(-5-\tfrac{5}{9}\bigr)\cdot\frac{16\cdot 2+25}{2\cdot 25}
 +
= -\frac{50}{9}\cdot\frac{57}{50}
 +
= -\frac{57}{9}
 +
= -\frac{19}{3}\,,\\[15pt]
 +
\text{RHS} &= \frac{6\cdot\frac{4}{5}-1}{3\cdot\frac{4}{5}-3}
 +
= \frac{\frac{24}{5}-\frac{5}{5}}{\frac{12}{5}-\frac{15}{5}}
 +
= \frac{\frac{1}{5}\cdot (24-5)}{\frac{1}{5}\cdot (12-15)}
 +
= \frac{19}{-3}
 +
= -\frac{19}{3}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

Start by rewriting the terms on the left-hand side as one term having a common denominator

\displaystyle \begin{align}

\frac{1}{x-1}-\frac{1}{x+1} &= \frac{1}{x-1}\cdot\frac{x+1}{x+1} - \frac{1}{x+1}\cdot\frac{x-1}{x-1}\\[5pt] &= \frac{x+1}{(x-1)(x+1)} - \frac{x-1}{(x-1)(x+1)}\\[5pt] &= \frac{(x+1)-(x-1)}{(x-1)(x+1)}\\[5pt] &= \frac{2}{(x-1)(x+1)}\,\textrm{.} \end{align}

If we also write \displaystyle 3x-3=3(x-1), the equation can be rewritten as

\displaystyle \frac{2}{(x-1)(x+1)}\bigl(x^{2}+\tfrac{1}{2}\bigr) = \frac{6x-1}{3(x-1)}\,\textrm{.}

Because \displaystyle x=1 cannot be a solution to the equation, the factor \displaystyle x-1 can be removed from the denominator of both sides (i.e. actually, we multiply both sides by \displaystyle x-1 and then eliminate it)

\displaystyle \frac{2}{x+1}\bigl(x^{2}+\tfrac{1}{2}\bigr) = \frac{6x-1}{3}\,\textrm{.}

Then, both sides are multiplied by 3 and \displaystyle x+1, so that we get an equation without any denominators

\displaystyle 6\bigl(x^{2}+\tfrac{1}{2}\bigr) = (6x-1)(x+1)\,\textrm{.}

Expanding both sides

\displaystyle 6x^{2}+3=6x^{2}+5x-1\,\textrm{.}

The x² terms cancel each other out and we obtain a first-order equation,

\displaystyle 3=5x-1\,,

which has the solution

\displaystyle x=\frac{4}{5}\,\textrm{.}

We check whether we have calculated correctly by substituting \displaystyle x=4/5 into the original equation,

\displaystyle \begin{align}

\text{LHS} &= \biggl(\frac{1}{\frac{4}{5}-1}-\frac{1}{\frac{4}{5}+1}\biggr)\bigl( \bigl(\tfrac{4}{5}\bigr)^{2}+\tfrac{1}{2}\bigr) = \biggl(\frac{1}{-\frac{1}{5}}-\frac{1}{\frac{9}{5}}\biggr)\bigl( \tfrac{16}{25}+\tfrac{1}{2}\bigr)\\[5pt] &= \bigl(-5-\tfrac{5}{9}\bigr)\cdot\frac{16\cdot 2+25}{2\cdot 25} = -\frac{50}{9}\cdot\frac{57}{50} = -\frac{57}{9} = -\frac{19}{3}\,,\\[15pt] \text{RHS} &= \frac{6\cdot\frac{4}{5}-1}{3\cdot\frac{4}{5}-3} = \frac{\frac{24}{5}-\frac{5}{5}}{\frac{12}{5}-\frac{15}{5}} = \frac{\frac{1}{5}\cdot (24-5)}{\frac{1}{5}\cdot (12-15)} = \frac{19}{-3} = -\frac{19}{3}\,\textrm{.} \end{align}