Solution 2.2:6e

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_2_6e-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:2_2_6e-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (13:30, 24 September 2008) (edit) (undo)
m
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The lines have a point of intersection at that point which simultaneously satisfies the equations of both lines
-
<center> [[Bild:2_2_6e-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>2x+y-1=0\qquad\text{and}\qquad y-2x-2=0\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:2_2_6e-2(2).gif]] </center>
+
If we make ''y'' the subject of the second equation <math>y=2x+2</math> and substitute it into the first equation, we obtain an equation which only contains ''x'',
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>2x+(2x+2)-1=0\quad\Leftrightarrow\quad 4x+1=0\,,</math>}}
 +
 
 +
which gives that <math>x=-1/4\,</math>. Then, from the relation <math>y=2x+2</math>, we obtain <math>y = 2\cdot(-1/4)+2 = 3/2\,</math>.
 +
 
 +
The point of intersection is
 +
<math>\bigl(-\tfrac{1}{4},\tfrac{3}{2}\bigr)</math>.
 +
 
 +
 
 +
<center>[[Image:2_2_6_e.gif|center]]</center>
 +
 
 +
 
 +
We check for safety's sake that <math>\bigl(-\tfrac{1}{4},\tfrac{3}{2}\bigr)</math>
 +
really satisfies both equations:
 +
 
 +
:*2''x''&nbsp;+&nbsp;''y''&nbsp;-&nbsp;1&nbsp;=&nbsp;0: <math>\quad\textrm{LHS} = 2\cdot\bigl(-\tfrac{1}{4}\bigr) + \tfrac{3}{2} - 1 = -\tfrac{1}{2} + \tfrac{3}{2} - \tfrac{2}{2} = 0 = \textrm{RHS.}</math>
 +
 
 +
:*''y''&nbsp;-&nbsp;2''x''&nbsp;-&nbsp;2&nbsp;=&nbsp;0: <math>\quad\textrm{LHS} = \tfrac{3}{2}-2\cdot\bigl(-\tfrac{1}{4}\bigr)-2 = \tfrac{3}{2} + \tfrac{1}{2} - \tfrac{4}{2} = 0 = \textrm{RHS.}</math>

Current revision

The lines have a point of intersection at that point which simultaneously satisfies the equations of both lines

\displaystyle 2x+y-1=0\qquad\text{and}\qquad y-2x-2=0\,\textrm{.}

If we make y the subject of the second equation \displaystyle y=2x+2 and substitute it into the first equation, we obtain an equation which only contains x,

\displaystyle 2x+(2x+2)-1=0\quad\Leftrightarrow\quad 4x+1=0\,,

which gives that \displaystyle x=-1/4\,. Then, from the relation \displaystyle y=2x+2, we obtain \displaystyle y = 2\cdot(-1/4)+2 = 3/2\,.

The point of intersection is \displaystyle \bigl(-\tfrac{1}{4},\tfrac{3}{2}\bigr).



We check for safety's sake that \displaystyle \bigl(-\tfrac{1}{4},\tfrac{3}{2}\bigr) really satisfies both equations:

  • 2x + y - 1 = 0: \displaystyle \quad\textrm{LHS} = 2\cdot\bigl(-\tfrac{1}{4}\bigr) + \tfrac{3}{2} - 1 = -\tfrac{1}{2} + \tfrac{3}{2} - \tfrac{2}{2} = 0 = \textrm{RHS.}
  • y - 2x - 2 = 0: \displaystyle \quad\textrm{LHS} = \tfrac{3}{2}-2\cdot\bigl(-\tfrac{1}{4}\bigr)-2 = \tfrac{3}{2} + \tfrac{1}{2} - \tfrac{4}{2} = 0 = \textrm{RHS.}