Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 2.3:1d

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (14:06, 26 September 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We apply the standard formula for completing the square,
-
<center> [[Image:2_3_1d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>x^{2}+ax = \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{,}</math>}}
 +
 
 +
on our expression and this gives
 +
 
 +
{{Displayed math||<math>x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.}</math>}}
 +
 
 +
The whole expression becomes
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
x^{2}+5x+3
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}+3\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{12}{4}\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} + \frac{12-25}{4}\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
A quick check shows that we have calculated correctly
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}
 +
&= x^{2} + 2\cdot\frac{5}{2}\cdot x + \Bigl(\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\\[5pt]
 +
&= x^{2} + 5x + \frac{25}{4} - \frac{13}{4}\\[5pt]
 +
&= x^{2} + 5x + \frac{12}{4}\\[5pt]
 +
&= x^{2}+5x+3\,\textrm{.}
 +
\end{align}</math>}}

Current revision

We apply the standard formula for completing the square,

x2+ax=x+2a22a2, 

on our expression and this gives

x2+5x=x+252252=x+252425. 

The whole expression becomes

x2+5x+3=x+252425+3=x+252425+412=x+252+41225=x+252413.

A quick check shows that we have calculated correctly

x+252413=x2+225x+252413=x2+5x+425413=x2+5x+412=x2+5x+3.