Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 2.3:1d

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (14:06, 26 September 2008) (edit) (undo)
m
 
Line 1: Line 1:
We apply the standard formula for completing the square,
We apply the standard formula for completing the square,
-
 
+
{{Displayed math||<math>x^{2}+ax = \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{,}</math>}}
-
<math>x^{2}+ax=\left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math>
+
on our expression and this gives
on our expression and this gives
-
 
+
{{Displayed math||<math>x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.}</math>}}
-
<math>x^{2}+5x=\left( x+\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}</math>
+
The whole expression becomes
The whole expression becomes
 +
{{Displayed math||<math>\begin{align}
 +
x^{2}+5x+3
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}+3\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{12}{4}\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} + \frac{12-25}{4}\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
A quick check shows that we have calculated correctly
-
& x^{2}+5x+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{12}{4} \\
+
-
& =\left( x+\frac{5}{2} \right)^{2}+\frac{12-25}{4}=\left( x+\frac{5}{2} \right)^{2}-\frac{13}{4} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
A quick check shows that we have calculated correctly.
+
-
 
+
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& \left( x+\frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+2\centerdot \frac{5}{2}\centerdot x+\left( \frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+5x+\frac{25}{4}-\frac{13}{4} \\
+
\Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}
-
& =x^{2}+5x+\frac{12}{4}=x^{2}+5x+3 \\
+
&= x^{2} + 2\cdot\frac{5}{2}\cdot x + \Bigl(\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\\[5pt]
-
\end{align}</math>
+
&= x^{2} + 5x + \frac{25}{4} - \frac{13}{4}\\[5pt]
 +
&= x^{2} + 5x + \frac{12}{4}\\[5pt]
 +
&= x^{2}+5x+3\,\textrm{.}
 +
\end{align}</math>}}

Current revision

We apply the standard formula for completing the square,

x2+ax=x+2a22a2, 

on our expression and this gives

x2+5x=x+252252=x+252425. 

The whole expression becomes

x2+5x+3=x+252425+3=x+252425+412=x+252+41225=x+252413.

A quick check shows that we have calculated correctly

x+252413=x2+225x+252413=x2+5x+425413=x2+5x+412=x2+5x+3.