Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 2.3:1c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (14:08, 26 September 2008) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
As always when completing the square, we focus on the quadratic and linear terms
As always when completing the square, we focus on the quadratic and linear terms
-
<math>2x-x^{2}</math>
+
<math>2x-x^{2}</math>, which we also can write as <math>-(x^{2}-2x)</math>. If we neglect the minus sign, we can complete square of the expression <math>2x-x^{2}</math> by using the formula
-
, which we also can write as
+
-
<math>-\left( x^{2}-2x \right)</math>
+
-
. If we neglect the minus sign, we can complete square of the expression
+
-
<math>2x-x^{2}</math>
+
-
by using the formula
+
-
 
+
-
 
+
-
<math>x^{2}-ax=\left( x-\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math>
+
 +
{{Displayed math||<math>x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}</math>}}
and we obtain
and we obtain
-
 
+
{{Displayed math||<math>x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.}</math>}}
-
<math>x^{2}-2x=\left( x-\frac{2}{2} \right)^{2}-\left( \frac{2}{2} \right)^{2}=\left( x-1 \right)^{2}-1</math>
+
-
 
+
This means that
This means that
 +
{{Displayed math||<math>\begin{align}
 +
5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt]
 +
&= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
A quick check shows that we have completed the square correctly
-
& 5+2x-x^{2}=5-\left( x^{2}-2x \right)=5-\left( \left( x-1 \right)^{2}-1 \right) \\
+
-
& \\
+
-
& =5-\left( x-1 \right)^{2}+1=6-\left( x-1 \right)^{2} \\
+
-
& \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
A quick check shows that we have completed the square correctly.:
+
-
 
+
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& 6-\left( x-1 \right)^{2}=6-\left( x^{2}-2x+1 \right)=6-x^{2}+2x-1 \\
+
6-(x-1)^{2}
-
& \\
+
&= 6-(x^{2}-2x+1)\\[5pt]
-
& =5+2x-x^{2} \\
+
&= 6-x^{2}+2x-1\\[5pt]
-
& \\
+
& =5+2x-x^{2}\textrm{.}
-
\end{align}</math>
+
\end{align}</math>}}

Current revision

As always when completing the square, we focus on the quadratic and linear terms 2xx2, which we also can write as (x22x). If we neglect the minus sign, we can complete square of the expression 2xx2 by using the formula

x2ax=x2a22a2 

and we obtain

x22x=x222222=(x1)21. 

This means that

5+2xx2=5(x22x)=5(x1)21=5(x1)2+1=6(x1)2.

A quick check shows that we have completed the square correctly

6(x1)2=6(x22x+1)=6x2+2x1=5+2xx2.