Loading http://wiki.math.se/jsMath/fonts/msam10/def.js
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 3.1:2g

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.1:2g moved to Solution 3.1:2g: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Because
-
<center> [[Image:3_1_2g.gif]] </center>
+
<math>-\text{125 }</math>
-
{{NAVCONTENT_STOP}}
+
can be written as
 +
<math>-125=\left( -5 \right)\centerdot \left( -5 \right)\centerdot \left( -5 \right)=\left( -5 \right)^{3}</math>,
 +
<math>\sqrt[3]{-125}</math>
 +
is defined as
 +
 
 +
 
 +
<math>\sqrt[3]{-125}=-5</math>
 +
 
 +
 
 +
NOTE: As opposed to
 +
<math>\sqrt{-125}</math>
 +
(the square root of
 +
<math>-125</math>
 +
) which is not defined,
 +
<math>\sqrt[3]{-125}</math>
 +
is defined . In other words, there does not exist any number which satisfies
 +
<math>x^{\text{2}}=-\text{125}</math>, but there is a number
 +
<math>x</math>
 +
which satisfies
 +
<math>x^{\text{3}}=-\text{125}</math>.
 +
 
 +
NOTE: It is possible to write the calculation in the solution as
 +
<math>\sqrt[3]{-125}=\sqrt[3]{\left( -5 \right)^{3}}=\left( -5 \right)^{1}=-5</math>, but one has to be careful when one calculates using negative numbers and fractional exponents. Sometimes, the expression is not defined and the usual power rules do not always hold. Look, for example, at the calculation
 +
 
 +
 
 +
<math>\begin{align}
 +
& -5=\left( -125 \right)^{{1}/{3}\;}=\left( -125 \right)^{{2}/{6}\;}=\left( \left( -125 \right)^{2} \right)^{{1}/{6}\;} \\
 +
& =15625^{{1}/{6}\;}=5 \\
 +
\end{align}</math>

Revision as of 09:00, 30 September 2008

Because 125 can be written as \displaystyle -125=\left( -5 \right)\centerdot \left( -5 \right)\centerdot \left( -5 \right)=\left( -5 \right)^{3}, \displaystyle \sqrt[3]{-125} is defined as


\displaystyle \sqrt[3]{-125}=-5


NOTE: As opposed to \displaystyle \sqrt{-125} (the square root of \displaystyle -125 ) which is not defined, \displaystyle \sqrt[3]{-125} is defined . In other words, there does not exist any number which satisfies \displaystyle x^{\text{2}}=-\text{125}, but there is a number \displaystyle x which satisfies \displaystyle x^{\text{3}}=-\text{125}.

NOTE: It is possible to write the calculation in the solution as \displaystyle \sqrt[3]{-125}=\sqrt[3]{\left( -5 \right)^{3}}=\left( -5 \right)^{1}=-5, but one has to be careful when one calculates using negative numbers and fractional exponents. Sometimes, the expression is not defined and the usual power rules do not always hold. Look, for example, at the calculation


\displaystyle \begin{align} & -5=\left( -125 \right)^{{1}/{3}\;}=\left( -125 \right)^{{2}/{6}\;}=\left( \left( -125 \right)^{2} \right)^{{1}/{6}\;} \\ & =15625^{{1}/{6}\;}=5 \\ \end{align}