Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 4.3:8a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.3:8a moved to Solution 4.3:8a: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:4_3_8a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
We rewrite
 +
<math>\text{tan }v</math>
 +
on the left-hand side as
 +
<math>\frac{\sin v}{\cos v}</math>, so that
 +
 
 +
 
 +
<math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}</math>
 +
 
 +
 
 +
If we then use the Pythagorean identity
 +
 
 +
 
 +
<math>\cos ^{2}v+\sin ^{2}v=1</math>
 +
 
 +
 
 +
and rewrite
 +
<math>\text{cos}^{\text{2}}v</math>
 +
in the denominator as
 +
<math>\text{1}-\text{sin}^{\text{2}}v\text{ }</math>, we get what we are looking for on the right-hand side. The whole calculation is
 +
 
 +
 
 +
<math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}=\frac{\sin ^{2}v}{1-\sin ^{2}v}</math>

Revision as of 10:37, 30 September 2008


We rewrite tan v on the left-hand side as sinvcosv, so that


tan2v=sin2vcos2v


If we then use the Pythagorean identity


cos2v+sin2v=1


and rewrite cos2v in the denominator as 1sin2v , we get what we are looking for on the right-hand side. The whole calculation is


tan2v=sin2vcos2v=sin2v1sin2v