Solution 4.4:5b
From Förberedande kurs i matematik 1
m (Lösning 4.4:5b moved to Solution 4.4:5b: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | + | Let's first investigate when the equality | |
- | < | + | |
- | + | ||
- | + | <math>\tan u=\tan v</math> | |
- | < | + | |
- | + | ||
+ | is satisfied. Because | ||
+ | <math>u</math> | ||
+ | can be interpreted as the slope (gradient) of the line which makes an angle | ||
+ | <math>u</math> | ||
+ | with the positive | ||
+ | <math>x</math> | ||
+ | -axis, we see that for a fixed value of tan u, there are two angles | ||
+ | <math>v</math> | ||
+ | in the unit circle with this slope: | ||
+ | |||
+ | |||
+ | <math>v=u</math> | ||
+ | and | ||
+ | <math>v=u+\pi </math> | ||
+ | |||
[[Image:4_4_5_b.gif|center]] | [[Image:4_4_5_b.gif|center]] | ||
+ | |||
+ | slope | ||
+ | <math>=\text{ tan }u</math> | ||
+ | slope | ||
+ | <math>=\text{ tan }u</math> | ||
+ | |||
+ | |||
+ | The angle | ||
+ | <math>v</math> | ||
+ | has the same slope after every half turn, so if we add multiples of | ||
+ | <math>\pi \text{ }</math> | ||
+ | to | ||
+ | <math>u</math>, we will obtain all the angles | ||
+ | <math>v</math> | ||
+ | which satisfy the equality | ||
+ | |||
+ | |||
+ | <math>v=u+n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n</math> | ||
+ | is an arbitrary integer. | ||
+ | |||
+ | If we apply this result to the equation | ||
+ | |||
+ | |||
+ | <math>\tan x=\tan 4x</math> | ||
+ | |||
+ | |||
+ | we see that the solutions are given by | ||
+ | |||
+ | |||
+ | <math>4x=x+n\pi </math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer), | ||
+ | |||
+ | and solving for | ||
+ | <math>x</math> | ||
+ | gives | ||
+ | |||
+ | |||
+ | <math>x=\frac{1}{3}n\pi </math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer). |
Revision as of 11:06, 1 October 2008
Let's first investigate when the equality
is satisfied. Because
slope
The angle
where
If we apply this result to the equation
we see that the solutions are given by
\displaystyle 4x=x+n\pi
(
\displaystyle n
an arbitrary integer),
and solving for \displaystyle x gives
\displaystyle x=\frac{1}{3}n\pi
(
\displaystyle n
an arbitrary integer).