Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 4.4:5c

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.4:5c moved to Solution 4.4:5c: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
For a fixed value of
-
<center> [[Image:4_4_5c-1(2).gif]] </center>
+
<math>u</math>, an equality of the form
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:4_4_5c-2(2).gif]] </center>
+
<math>\cos u=\cos v</math>
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
is satisfied by two angles
 +
<math>v</math>
 +
in the unit circle:
 +
 
 +
 
 +
<math>v=u</math>
 +
and
 +
<math>v=-u</math>
[[Image:4_4_5_c.gif|center]]
[[Image:4_4_5_c.gif|center]]
 +
 +
This means that all angles
 +
<math>v</math>
 +
which satisfy the equality are
 +
 +
 +
<math>v=u+2n\pi </math>
 +
and
 +
<math>v=-u+2n\pi </math>
 +
 +
 +
where
 +
<math>n\text{ }</math>
 +
is an arbitrary integer.
 +
 +
Therefore, the equation
 +
 +
 +
<math>\cos 5x=\cos \left( x+{\pi }/{5}\; \right)</math>
 +
 +
 +
has the solutions
 +
 +
 +
<math>5x=x+\frac{\pi }{5}+2n\pi </math>
 +
or
 +
 +
<math>5x=-x-\frac{\pi }{5}+2n\pi </math>
 +
 +
If we collect
 +
<math>x\text{ }</math>
 +
onto one side, we end up with
 +
 +
 +
<math>\left\{ \begin{array}{*{35}l}
 +
x=\frac{\pi }{20}+\frac{1}{2}n\pi \\
 +
x=-\frac{\pi }{30}+\frac{1}{3}n\pi \\
 +
\end{array} \right.</math>
 +
(
 +
<math>n\text{ }</math>
 +
an arbitrary integer).

Revision as of 11:18, 1 October 2008

For a fixed value of u, an equality of the form


cosu=cosv


is satisfied by two angles v in the unit circle:


v=u and v=u


This means that all angles v which satisfy the equality are


v=u+2n and v=u+2n


where n is an arbitrary integer.

Therefore, the equation


cos5x=cosx+5 


has the solutions


5x=x+5+2n or

5x=x5+2n

If we collect x onto one side, we end up with


x=20+21nx=30+31n  ( n an arbitrary integer).