Solution 4.4:7c
From Förberedande kurs i matematik 1
m (Lösning 4.4:7c moved to Solution 4.4:7c: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | {{ | + | If we want to solve the equation |
- | < | + | <math>\text{cos 3}x=\text{sin 4}x</math>, we need an additional result which tells us for which values of |
- | { | + | <math>u</math> |
- | + | and | |
- | < | + | <math>v</math> |
- | { | + | the equality |
- | { | + | <math>\text{cos }u=\text{sin }v</math> |
- | < | + | holds, but to get that we have to start with the equality |
- | + | <math>\cos u=\cos v</math>. | |
+ | |||
+ | So, we start by looking at the equality | ||
+ | |||
+ | |||
+ | <math>\cos u=\cos v</math> | ||
+ | |||
+ | |||
+ | We know that for fixed | ||
+ | <math>u</math> | ||
+ | there are two angles | ||
+ | <math>v=u\text{ }</math> | ||
+ | and | ||
+ | <math>v=-\text{u}</math> | ||
+ | in the unit circle which have the cosine value | ||
+ | <math>\cos u</math>, i.e. their | ||
+ | <math>x</math> | ||
+ | -coordinate is equal to | ||
+ | <math>\cos u</math>. | ||
+ | |||
[[Image:4_4_7_c1.gif|center]] | [[Image:4_4_7_c1.gif|center]] | ||
+ | |||
+ | Imagine now that the whole unit circle is rotated anti-clockwise an angle | ||
+ | <math>{\pi }/{2}\;</math>. The line | ||
+ | <math>x=\cos u</math> | ||
+ | will become the line | ||
+ | <math>y=\cos u</math> | ||
+ | and the angles | ||
+ | <math>u</math> | ||
+ | and | ||
+ | <math>-u</math> | ||
+ | are rotated to | ||
+ | <math>u+{\pi }/{2}\;</math> | ||
+ | and | ||
+ | <math>-u+{\pi }/{2}\;</math>, respectively. | ||
+ | |||
[[Image:4_4_7_c2.gif|center]] | [[Image:4_4_7_c2.gif|center]] | ||
+ | |||
+ | The angles | ||
+ | <math>u+{\pi }/{2}\;</math> | ||
+ | and | ||
+ | <math>-u+{\pi }/{2}\;</math> | ||
+ | therefore have their | ||
+ | <math>y</math> | ||
+ | -coordinate, and hence sine value, equal to | ||
+ | <math>\cos u</math>. In other words, the equality | ||
+ | |||
+ | |||
+ | <math>\text{cos }u=\text{sin }v</math> | ||
+ | |||
+ | |||
+ | holds for fixed | ||
+ | <math>u</math> | ||
+ | in the unit circle when | ||
+ | <math>v=\pm u+{\pi }/{2}\;</math>, and more generally when | ||
+ | |||
+ | |||
+ | <math>v=\pm u+\frac{\pi }{2}+2n\pi </math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer). | ||
+ | |||
+ | For our equation | ||
+ | <math>\text{cos 3}x=\text{sin 4}x</math>, this result means that | ||
+ | <math>x\text{ }</math> | ||
+ | must satisfy | ||
+ | |||
+ | |||
+ | <math>4x=\pm 3x+\frac{\pi }{2}+2n\pi </math> | ||
+ | |||
+ | |||
+ | This means that the solutions to the equation are | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{\pi }{2}+2n\pi \\ | ||
+ | x=\frac{\pi }{14}+\frac{2}{7}\pi n \\ | ||
+ | \end{array} \right.</math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer) |
Revision as of 13:20, 1 October 2008
If we want to solve the equation
So, we start by looking at the equality
We know that for fixed
Imagine now that the whole unit circle is rotated anti-clockwise an angle
2
2
2
The angles
2
2
holds for fixed
u+
2
u+
2+2n
For our equation
3x+
2+2n
This means that the solutions to the equation are
x=
2+2n
x=
14+72
n