Processing Math: Done
Solution 4.4:8a
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 4.4:8a moved to Solution 4.4:8a: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | {{ | + | If we use the formula for double angles, |
- | < | + | <math>\text{sin 2}x=\text{2sin }x\text{ cos }x</math>, and move all the terms over to the left-hand side, the equation becomes |
- | {{ | + | |
- | {{ | + | |
- | < | + | <math>2\sin x\cos x-\sqrt{2}\cos x=0.</math> |
- | {{ | + | |
+ | |||
+ | Then, we see that we can take a factor cos x out of both terms, | ||
+ | |||
+ | |||
+ | <math>\cos x\left( 2\sin x-\sqrt{2} \right)=0</math> | ||
+ | |||
+ | |||
+ | and hence divide up the equation into two cases. The equation is satisfied either if | ||
+ | <math>\text{cos }x=0\text{ }</math> | ||
+ | or if | ||
+ | <math>2\sin x-\sqrt{2}=0</math>. | ||
+ | |||
+ | |||
+ | <math>\text{cos }x=0\text{ }</math>: this equation has the general solution | ||
+ | |||
+ | |||
+ | <math>x=\frac{\pi }{2}+n\pi </math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer) | ||
+ | |||
+ | |||
+ | <math>2\sin x-\sqrt{2}=0</math>: If we collect | ||
+ | <math>\text{sin }x</math> | ||
+ | on the left-hand side, we obtain the equation | ||
+ | <math>\text{sin }x\text{ }={1}/{\sqrt{2}}\;</math>, which has the general solution | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{\pi }{4}+2n\pi \\ | ||
+ | x=\frac{3\pi }{4}+2n\pi \\ | ||
+ | \end{array} \right.</math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer) | ||
+ | |||
+ | The complete solution of the equation is | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{\pi }{4}+2n\pi \\ | ||
+ | x=\frac{\pi }{2}+n\pi \\ | ||
+ | x=\frac{3\pi }{4}+2n\pi \\ | ||
+ | \end{array} \right.</math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer). |
Revision as of 13:31, 1 October 2008
If we use the formula for double angles,
2cosx=0
Then, we see that we can take a factor cos x out of both terms,
2sinx−
2
=0
and hence divide up the equation into two cases. The equation is satisfied either if
2=0
2+n
2=0
2
x=
4+2n
x=43
+2n
The complete solution of the equation is
x=
4+2n
x=
2+n
x=43
+2n