Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 3.3:2g

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (06:20, 2 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
We know that
+
We know that <math>10^{\lg x} = x</math>, so therefore we rewrite the exponent as
-
<math>10^{\lg x}=x</math>, so therefore we rewrite the exponent as
+
<math>-\lg 0\textrm{.}1 = (-1)\cdot\lg 0\textrm{.}1 = \lg 0\textrm{.}1^{-1}</math>
-
<math>-\lg 0.1=\left( -1 \right)\centerdot \lg 0.1=\lg 0.1^{-1}</math>
+
by using the log law <math>b\lg a = \lg a^b</math>. This gives
-
by using the log law
+
-
<math>b\lg a=\lg a^{b}</math>. This gives
+
-
 
+
{{Displayed math||<math>10^{-\lg 0\textrm{.}1}=10^{\lg 0\textrm{.}1^{-1}}=0\textrm{.}1^{-1}=\frac{1}{0\textrm{.}1}=10\,\textrm{.}</math>}}
-
<math>10^{-\lg 0.1}=10^{\lg 0.1^{-1}}=0.1^{-1}=\frac{1}{0.1}=10</math>
+

Current revision

We know that 10lgx=x, so therefore we rewrite the exponent as lg0.1=(1)lg0.1=lg0.11 by using the log law blga=lgab. This gives

10lg0.1=10lg0.11=0.11=10.1=10.