Processing Math: Done
Solution 3.4:1b
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 3.4:1b moved to Solution 3.4:1b: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | In the equation, both sides are positive because the factors <math>e^{x}</math> and <math>3^{-x}</math> are positive regardless of the value of <math>x</math> (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both sides, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\ln\bigl(13e^{x}\bigr) = \ln\bigl(2\cdot 3^{-x}\bigr)\,\textrm{.}</math>}} |
- | {{ | + | |
- | < | + | Using the log laws, we can divide up the products into several logarithmic terms, |
- | {{ | + | |
+ | {{Displayed math||<math>\ln 13+\ln e^{x} =\ln 2+\ln 3^{-x},</math>}} | ||
+ | |||
+ | and using the law <math>\ln a^{b}=b\cdot \ln a</math>, we can get rid of <math>x</math> from the exponents | ||
+ | |||
+ | {{Displayed math||<math>\ln 13 + x\ln e = \ln 2 + (-x)\ln 3\,\textrm{.}</math>}} | ||
+ | |||
+ | Collect <math>x</math> on one side and the other terms on the other, | ||
+ | |||
+ | {{Displayed math||<math>x\ln e+x\ln 3=\ln 2-\ln 13\,\textrm{.}</math>}} | ||
+ | |||
+ | Take out <math>x</math> on the left-hand side and use <math>\ln e=1</math>, | ||
+ | |||
+ | {{Displayed math||<math>x( 1+\ln 3)=\ln 2-\ln 13\,\textrm{.}</math>}} | ||
+ | |||
+ | Then, solve for <math>x</math>, | ||
+ | |||
+ | {{Displayed math||<math>x=\frac{\ln 2-\ln 13}{1+\ln 3}\,\textrm{.}</math>}} | ||
+ | |||
+ | |||
+ | Note: Because <math>\ln 2 < \ln 13</math>, we can write the answer as | ||
+ | |||
+ | {{Displayed math||<math>x=-\frac{\ln 13-\ln 2}{1+\ln 3}</math>}} | ||
+ | |||
+ | to indicate that <math>x</math> is negative. |
Current revision
In the equation, both sides are positive because the factors
![]() ![]() ![]() ![]() ![]() |
Using the log laws, we can divide up the products into several logarithmic terms,
![]() |
and using the law lna
Collect
Take out
Then, solve for
Note: Because ln13
to indicate that