Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 3.4:1b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.4:1b moved to Solution 3.4:1b: Robot: moved page)
Current revision (08:54, 2 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
In the equation, both sides are positive because the factors <math>e^{x}</math> and <math>3^{-x}</math> are positive regardless of the value of <math>x</math> (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both sides,
-
<center> [[Image:3_4_1b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\ln\bigl(13e^{x}\bigr) = \ln\bigl(2\cdot 3^{-x}\bigr)\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_4_1b-2(2).gif]] </center>
+
Using the log laws, we can divide up the products into several logarithmic terms,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\ln 13+\ln e^{x} =\ln 2+\ln 3^{-x},</math>}}
 +
 
 +
and using the law <math>\ln a^{b}=b\cdot \ln a</math>, we can get rid of <math>x</math> from the exponents
 +
 
 +
{{Displayed math||<math>\ln 13 + x\ln e = \ln 2 + (-x)\ln 3\,\textrm{.}</math>}}
 +
 
 +
Collect <math>x</math> on one side and the other terms on the other,
 +
 
 +
{{Displayed math||<math>x\ln e+x\ln 3=\ln 2-\ln 13\,\textrm{.}</math>}}
 +
 
 +
Take out <math>x</math> on the left-hand side and use <math>\ln e=1</math>,
 +
 
 +
{{Displayed math||<math>x( 1+\ln 3)=\ln 2-\ln 13\,\textrm{.}</math>}}
 +
 
 +
Then, solve for <math>x</math>,
 +
 
 +
{{Displayed math||<math>x=\frac{\ln 2-\ln 13}{1+\ln 3}\,\textrm{.}</math>}}
 +
 
 +
 
 +
Note: Because <math>\ln 2 < \ln 13</math>, we can write the answer as
 +
 
 +
{{Displayed math||<math>x=-\frac{\ln 13-\ln 2}{1+\ln 3}</math>}}
 +
 
 +
to indicate that <math>x</math> is negative.

Current revision

In the equation, both sides are positive because the factors ex and 3x are positive regardless of the value of x (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both sides,

ln13ex=ln23x. 

Using the log laws, we can divide up the products into several logarithmic terms,

ln13+lnex=ln2+ln3x

and using the law lnab=blna, we can get rid of x from the exponents

ln13+xlne=ln2+(x)ln3.

Collect x on one side and the other terms on the other,

xlne+xln3=ln2ln13.

Take out x on the left-hand side and use lne=1,

x(1+ln3)=ln2ln13.

Then, solve for x,

x=1+ln3ln2ln13.


Note: Because ln2ln13, we can write the answer as

x=1+ln3ln13ln2

to indicate that x is negative.