Processing Math: Done
Solution 4.2:5d
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | By subtracting 360° from 495°, we do not change the value of the tangent, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\tan 495^{\circ} = \tan (495^{\circ} - 360^{\circ}) = \tan 135^{\circ}\,\textrm{.}</math>}} |
+ | |||
+ | We know from exercise a that <math>\cos 135^{\circ} = -1/\!\sqrt{2}</math> and <math>\sin 135^{\circ} = 1/\!\sqrt{2}\,</math>, which gives | ||
+ | |||
+ | {{Displayed math||<math>\tan 135^{\circ} = \frac{\sin 135^{\circ}}{\cos 135^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.}</math>}} |
Current revision
By subtracting 360° from 495°, we do not change the value of the tangent,
![]() ![]() ![]() ![]() |
We know from exercise a that =−1
2
=1
2
![]() ![]() ![]() ![]() ![]() |