Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.3:4d

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (14:16, 9 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
With the formula for double angles and the Pythagorean identity <math>\cos^2\!v + \sin^2\!v = 1</math>, we can express <math>\cos 2v</math> in terms of <math>\cos v</math>,
-
<center> [[Image:4_3_4d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\cos 2v &= \cos^2\!v - \sin^2\!v\\[5pt]
 +
&= \cos^2\!v - (1-\cos^2\!v)\\[5pt]
 +
&= 2\cos^2\!v-1\\[5pt]
 +
&= 2b^2-1\,\textrm{.}
 +
\end{align}</math>}}

Current revision

With the formula for double angles and the Pythagorean identity cos2v+sin2v=1, we can express cos2v in terms of cosv,

cos2v=cos2vsin2v=cos2v(1cos2v)=2cos2v1=2b21.