Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.3:4d

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (14:16, 9 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
With the formula for double angles and the Pythagorean identity
+
With the formula for double angles and the Pythagorean identity <math>\cos^2\!v + \sin^2\!v = 1</math>, we can express <math>\cos 2v</math> in terms of <math>\cos v</math>,
-
<math>\cos ^{2}v+\sin ^{2}v=1</math>, we can express
+
-
<math>\text{cos 2}v\text{ }</math>
+
-
in terms of
+
-
<math>\text{cos }v</math>,
+
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\cos 2v &= \cos^2\!v - \sin^2\!v\\[5pt]
-
& \text{cos 2}v=\cos ^{2}v-\sin ^{2}v=\cos ^{2}v-\left( 1-\cos ^{2}v \right) \\
+
&= \cos^2\!v - (1-\cos^2\!v)\\[5pt]
-
& =2\cos ^{2}v-1=2b^{2}-1 \\
+
&= 2\cos^2\!v-1\\[5pt]
-
\end{align}</math>
+
&= 2b^2-1\,\textrm{.}
 +
\end{align}</math>}}

Current revision

With the formula for double angles and the Pythagorean identity cos2v+sin2v=1, we can express cos2v in terms of cosv,

cos2v=cos2vsin2v=cos2v(1cos2v)=2cos2v1=2b21.