Solution 4.3:6a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_3_6a-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:4_3_6a-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (07:35, 10 October 2008) (edit) (undo)
m
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we think of the angle v as an angle in the unit circle, then ''v'' lies in the fourth quadrant and has ''x''-coordinate 3/4.
-
<center> [[Bild:4_3_6a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
[[Image:4_3_6_a1.gif|center]]
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:4_3_6a-2(2).gif]] </center>
+
If we enlarge the fourth quadrant, we see that we can make a right-angled triangle with hypotenuse equal to 1 and an opposite side equal to 3/4.
-
{{NAVCONTENT_STOP}}
+
 
 +
[[Image:4_3_6_a2.gif|center]]
 +
 
 +
Using the Pythagorean theorem, it is possible to determine the remaining side from
 +
 
 +
{{Displayed math||<math>b^2 + \Bigl(\frac{3}{4}\Bigr)^2 = 1^2</math>}}
 +
 
 +
which gives that
 +
 
 +
{{Displayed math||<math>b = \sqrt{1-\Bigl(\frac{3}{4}\Bigr)^2} = \sqrt{1-\frac{9}{16}} = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4}\,\textrm{.}</math>}}
 +
 
 +
Because the angle ''v'' belongs to the fourth quadrant, its ''y''-coordinate is negative and is therefore equal to <math>-b</math>, i.e.
 +
 
 +
{{Displayed math||<math>\sin v=-\frac{\sqrt{7}}{4}\,\textrm{.}</math>}}
 +
 
 +
Thus, we have directly that
 +
 
 +
{{Displayed math||<math>\tan v = \frac{\sin v}{\cos v} = \frac{-\sqrt{7}/4}{3/4} = -\frac{\sqrt{7}}{3}\,\textrm{.}</math>}}

Current revision

If we think of the angle v as an angle in the unit circle, then v lies in the fourth quadrant and has x-coordinate 3/4.

If we enlarge the fourth quadrant, we see that we can make a right-angled triangle with hypotenuse equal to 1 and an opposite side equal to 3/4.

Using the Pythagorean theorem, it is possible to determine the remaining side from

\displaystyle b^2 + \Bigl(\frac{3}{4}\Bigr)^2 = 1^2

which gives that

\displaystyle b = \sqrt{1-\Bigl(\frac{3}{4}\Bigr)^2} = \sqrt{1-\frac{9}{16}} = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4}\,\textrm{.}

Because the angle v belongs to the fourth quadrant, its y-coordinate is negative and is therefore equal to \displaystyle -b, i.e.

\displaystyle \sin v=-\frac{\sqrt{7}}{4}\,\textrm{.}

Thus, we have directly that

\displaystyle \tan v = \frac{\sin v}{\cos v} = \frac{-\sqrt{7}/4}{3/4} = -\frac{\sqrt{7}}{3}\,\textrm{.}