Processing Math: Done
Solution 4.3:7a
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | We can write the expression <math>\sin (x+y)</math> in terms of <math>\sin x</math>, <math>\cos x</math>, <math>\sin y</math> and <math>\cos y</math> if we use the addition formula for sine, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\sin (x+y) = \sin x\cdot \cos y + \cos x\cdot \sin y\,\textrm{.}</math>}} |
+ | |||
+ | In turn, it is possible to express the factors <math>\cos x</math> and <math>\cos y</math> in terms of <math>\sin x</math> and <math>\sin y</math> by using the Pythagorean identity, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \cos x &= \pm \sqrt{1-\sin^2\!x} = \pm \sqrt{1-(2/3)^2} = \pm\frac{\sqrt{5}}{3}\,,\\[5pt] | ||
+ | \cos y &= \pm \sqrt{1-\sin^2\!y} = \pm \sqrt{1-(1/3)^{2}} = \pm \frac{2\sqrt{2}}{3}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | Because ''x'' and ''y'' are angles in the first quadrant, <math>\cos x</math> and <math>\cos y</math> are positive, so we in fact have | ||
+ | |||
+ | {{Displayed math||<math>\cos x = \frac{\sqrt{5}}{3}\qquad\text{and}\qquad\cos y = \frac{2\sqrt{2}}{3}\,\textrm{.}</math>}} | ||
+ | |||
+ | Finally, we obtain | ||
+ | |||
+ | {{Displayed math||<math>\sin (x+y) = \frac{2}{3}\cdot \frac{2\sqrt{2}}{3} + \frac{\sqrt{5}}{3}\cdot \frac{1}{3} = \frac{4\sqrt{2} + \sqrt{5}}{9}\,\textrm{.}</math>}} |
Current revision
We can write the expression
![]() ![]() |
In turn, it is possible to express the factors
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Because x and y are angles in the first quadrant,
![]() ![]() |
Finally, we obtain
![]() ![]() ![]() ![]() ![]() ![]() |