Processing Math: Done
Solution 4.4:2a
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_4_2a-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:4_4_2a-2(2).gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(4 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | { | + | We draw a unit circle and mark those angles on the circle which have a ''y''-coordinate of <math>\sqrt{3}/2</math>, in order to see which solutions lie between |
- | < | + | <math>0</math> and <math>2\pi</math>. |
- | {{ | + | |
- | {{ | + | [[Image:4_4_2_a.gif|center]] |
- | < | + | |
- | {{ | + | In the first quadrant, we recognize <math>x = \pi/3</math> as the angle which has a sine value of <math>\sqrt{3}/2</math> and then we have the reflectionally symmetric solution <math>x = \pi - \pi/3 = 2\pi/3</math> in the second quadrant. |
+ | |||
+ | Each of those solutions returns to itself after every revolution, so that we obtain the complete solution if we add multiples of <math>2\pi</math> | ||
+ | |||
+ | {{Displayed math||<math>x = \frac{\pi}{3}+2n\pi\qquad\text{and}\qquad x = \frac{2\pi}{3}+2n\pi\,,</math>}} | ||
+ | |||
+ | where ''n'' is an arbitrary integer. | ||
+ | |||
+ | |||
+ | Note: When we write that the complete solution is given by | ||
+ | |||
+ | {{Displayed math||<math>x = \frac{\pi}{3}+2n\pi\qquad\text{and}\qquad x = \frac{2\pi}{3}+2n\pi\,\textrm{,}</math>}} | ||
+ | |||
+ | this means that for every integer ''n'', we obtain a solution to the equation: | ||
+ | |||
+ | {{Displayed math||<math>\begin{array}{llll} | ||
+ | &n=0:\quad &x=\frac{\pi}{3}\quad &x=\frac{2\pi }{3}\\[5pt] | ||
+ | &n=-1:\quad &x=\frac{\pi}{3}+(-1)\cdot 2\pi\quad &x=\frac{2\pi}{3}+(-1)\cdot 2\pi\\[5pt] | ||
+ | &n=1:\quad &x=\frac{\pi}{3}+1\cdot 2\pi\quad &x=\frac{2\pi}{3}+1\cdot 2\pi\\[5pt] | ||
+ | &n=-2:\quad &x=\frac{\pi}{3}+(-2)\cdot 2\pi\quad &x=\frac{2\pi}{3}+(-2)\cdot 2\pi\\[5pt] | ||
+ | &n=2:\quad &x=\frac{\pi}{3}+2\cdot 2\pi\quad &x=\frac{2\pi}{3}+2\cdot 2\pi\\[5pt] | ||
+ | &\phantom{n}\vdots &\phantom{x}\vdots &\phantom{x}\vdots | ||
+ | \end{array}</math>}} |
Current revision
We draw a unit circle and mark those angles on the circle which have a y-coordinate of 3
2
In the first quadrant, we recognize 3
3
2
−
3=2
3
Each of those solutions returns to itself after every revolution, so that we obtain the complete solution if we add multiples of
![]() ![]() ![]() ![]() ![]() |
where n is an arbitrary integer.
Note: When we write that the complete solution is given by
![]() ![]() ![]() ![]() |
this means that for every integer n, we obtain a solution to the equation:
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |