Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.4:2d

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_4_2d-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:4_4_2d-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (14:32, 10 October 2008) (edit) (undo)
m
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Apart from the fact that there is a <math>5x</math>, this is a normal trigonometric equation of the type <math>\sin y = a\,</math>. If we are only interested in solutions which satisfy <math>0\le 5x\le 2\pi</math>, then a sketch of the unit circle shows that there are two such solutions, <math>5x = \pi/4</math> and the reflectionally symmetric solution <math>5x = \pi - \pi/4 = 3\pi/4\,</math>.
-
<center> [[Bild:4_4_2d-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
[[Image:4_4_2_d.gif|center]]
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:4_4_2d-2(2).gif]] </center>
+
All of the equation's solutions are obtained from all values of <math>5x</math> which differ by a multiple of <math>2\pi</math> from either of these two solutions,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>5x = \frac{\pi}{4} + 2n\pi\qquad\text{and}\qquad 5x = \frac{3\pi}{4} + 2n\pi\,,</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.
 +
 
 +
If we divide both of these by 5, we obtain the solutions expressed in terms of ''x'' alone,
 +
 
 +
{{Displayed math||<math>x = \frac{\pi}{20} + \frac{2}{5}n\pi\qquad\text{and}\qquad x = \frac{3\pi}{20} + \frac{2}{5}n\pi\,,</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.

Current revision

Apart from the fact that there is a 5x, this is a normal trigonometric equation of the type siny=a. If we are only interested in solutions which satisfy 05x2, then a sketch of the unit circle shows that there are two such solutions, 5x=4 and the reflectionally symmetric solution 5x=4=34.

All of the equation's solutions are obtained from all values of 5x which differ by a multiple of 2 from either of these two solutions,

5x=4+2nand5x=43+2n

where n is an arbitrary integer.

If we divide both of these by 5, we obtain the solutions expressed in terms of x alone,

x=20+52nandx=203+52n

where n is an arbitrary integer.