Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.4:2f

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.4:2f moved to Solution 4.4:2f: Robot: moved page)
Current revision (12:44, 13 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Using the unit circle shows that the equation <math>\cos 3x = -1/\!\sqrt{2}</math>
-
<center> [[Image:4_4_2f.gif]] </center>
+
has two solutions for <math>0\le 3x\le 2\pi\,</math>,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>3x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}\qquad\text{and}\qquad 3x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}\,\textrm{.}</math>}}
[[Image:4_4_2_f.gif|center]]
[[Image:4_4_2_f.gif|center]]
 +
 +
We obtain the other solutions by adding multiples of <math>2\pi</math>,
 +
 +
{{Displayed math||<math>3x = \frac{3\pi}{4} + 2n\pi\qquad\text{and}\qquad 3x = \frac{5\pi}{4} + 2n\pi\,,</math>}}
 +
 +
i.e.
 +
 +
{{Displayed math||<math>x = \frac{\pi}{4} + \frac{2}{3}n\pi\qquad\text{and}\qquad x = \frac{5\pi}{12} + \frac{2}{3}n\pi\,,</math>}}
 +
 +
where ''n'' is an arbitrary integer.

Current revision

Using the unit circle shows that the equation cos3x=12  has two solutions for 03x2,

3x=2+4=43and3x=+4=45.

We obtain the other solutions by adding multiples of 2,

3x=43+2nand3x=45+2n

i.e.

x=4+32nandx=125+32n

where n is an arbitrary integer.