Solution 4.4:4
From Förberedande kurs i matematik 1
m |
|||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | + | The idea is first to find the general solution to the equation and then to see which angles lie between <math>0^{\circ}</math> and <math>360^{\circ}\,</math>. | |
- | < | + | |
- | + | ||
- | + | ||
- | < | + | |
- | { | + | |
- | + | ||
- | < | + | |
- | + | ||
+ | If we start by considering the expression <math>2v+10^{\circ}</math> as an unknown, then we have a usual basic trigonometric equation. One solution which we can see directly is | ||
- | [[ | + | {{Displayed math||<math>2v + 10^{\circ} = 110^{\circ}\,\textrm{.}</math>}} |
+ | |||
+ | There is then a further solution which satisfies <math>0^{\circ}\le 2v + 10^{\circ}\le 360^{\circ}</math>, where <math>2v+10^{\circ}</math> lies in the third quadrant and makes the same angle with the negative ''y''-axis as <math>100^{\circ}</math> makes with the positive ''y''-axis, i.e. <math>2v + 10^{\circ}</math> makes an angle <math>110^{\circ} - 90^{\circ} = 20^{\circ}</math> | ||
+ | with the negative ''y''-axis and consequently | ||
+ | |||
+ | {{Displayed math||<math>2v + 10^{\circ} = 270^{\circ} - 20^{\circ} = 250^{\circ}\,\textrm{.}</math>}} | ||
+ | |||
+ | [[Image:4_4_4.gif|center]] | ||
+ | |||
+ | Now it is easy to write down the general solution, | ||
+ | |||
+ | {{Displayed math||<math>\left\{\begin{align} 2v + 10^{\circ} &= 110^{\circ} + n\cdot 360^{\circ}\quad\text{and}\\[5pt] 2v + 10^{\circ} &= 250^{\circ} + n\cdot 360^{\circ}\,,\end{align}\right.</math>}} | ||
+ | |||
+ | and if we make ''v'' the subject, we get | ||
+ | |||
+ | {{Displayed math||<math>\left\{\begin{align} v &= 50^{\circ} + n\cdot 180^{\circ}\quad\text{and}\\[5pt] v &= 120^{\circ} + n\cdot 180^{\circ}\end{align}\right.</math>}} | ||
+ | |||
+ | For different values of the integers ''n'', we see that the corresponding solutions are: | ||
+ | |||
+ | |||
+ | {| align="center" | ||
+ | |align="center"|<math>\cdots\cdots</math> | ||
+ | || | ||
+ | |align="center"|<math>\cdots\cdots</math> | ||
+ | || | ||
+ | |align="center"|<math>\cdots\cdots</math> | ||
+ | |- | ||
+ | |align="left"|<math>n=-2:</math> | ||
+ | |width="20px"| | ||
+ | |align="left"|<math>v = 50^{\circ} - 2\cdot 180^{\circ} = -310^{\circ}</math> | ||
+ | |width="20px"| | ||
+ | |align="left"|<math>v = 120^{\circ } - 2\cdot 180^{\circ} = -240^{\circ}</math> | ||
+ | |- | ||
+ | |align="left"|<math>n=-1:</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 50^{\circ} - 1\cdot 180^{\circ} = -130^{\circ}</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 120^{\circ} - 1\cdot 180^{\circ} = -60^{\circ}</math> | ||
+ | |- | ||
+ | |align="left"|<math>n=0:</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 50^{\circ} + 0\cdot 180^{\circ} = 50^{\circ}</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 120^{\circ} + 0\cdot 180^{\circ} = 120^{\circ}</math> | ||
+ | |- | ||
+ | |align="left"|<math>n=1:</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 50^{\circ} + 1\cdot 180^{\circ} = 230^{\circ}</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 120^{\circ} + 1\cdot 180^{\circ} = 300^{\circ}</math> | ||
+ | |- | ||
+ | |align="left"|<math>n=2:</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 50^{\circ} + 2\cdot 180^{\circ} = 410^{\circ}</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 120^{\circ} + 2\cdot 180^{\circ} = 480^{\circ}</math> | ||
+ | |- | ||
+ | |align="left"|<math>n=3:</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 50^{\circ} + 3\cdot 180^{\circ} = 590^{\circ}</math> | ||
+ | || | ||
+ | |align="left"|<math>v = 120^{\circ} + 3\cdot 180^{\circ} = 660^{\circ}</math> | ||
+ | |- | ||
+ | |align="center"|<math>\cdots\cdots</math> | ||
+ | || | ||
+ | |align="center"|<math>\cdots\cdots</math> | ||
+ | || | ||
+ | |align="center"|<math>\cdots\cdots</math> | ||
+ | |} | ||
+ | |||
+ | |||
+ | From the table, we see that the solutions that are between <math>0^{\circ}</math> and <math>360^{\circ}</math> are | ||
+ | |||
+ | {{Displayed math||<math>v = 50^{\circ},\quad v=120^{\circ },\quad v=230^{\circ}\quad\text{and}\quad v=300^{\circ}\,\textrm{.}</math>}} |
Current revision
The idea is first to find the general solution to the equation and then to see which angles lie between
If we start by considering the expression
![]() ![]() |
There is then a further solution which satisfies 2v+10
360
−90
=20
![]() ![]() ![]() ![]() |
Now it is easy to write down the general solution,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
and if we make v the subject, we get
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
For different values of the integers n, we see that the corresponding solutions are:
![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() | ||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() | |||
![]() ![]() ![]() ![]() | \displaystyle v = 120^{\circ} + 3\cdot 180^{\circ} = 660^{\circ} | |||
\displaystyle \cdots\cdots | \displaystyle \cdots\cdots | \displaystyle \cdots\cdots |
From the table, we see that the solutions that are between \displaystyle 0^{\circ} and \displaystyle 360^{\circ} are
\displaystyle v = 50^{\circ},\quad v=120^{\circ },\quad v=230^{\circ}\quad\text{and}\quad v=300^{\circ}\,\textrm{.} |