Processing Math: Done
Solution 4.4:5c
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_4_5c-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:4_4_5c-2(2).gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(4 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | For a fixed value of ''u'', an equality of the form |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\cos u=\cos v</math>}} |
- | {{ | + | |
- | < | + | is satisfied by two angles ''v'' in the unit circle, |
- | {{ | + | |
+ | {{Displayed math||<math>v=u\qquad\text{and}\qquad v=-u\,\textrm{.}</math>}} | ||
+ | |||
+ | [[Image:4_4_5_c.gif|center]] | ||
+ | |||
+ | This means that all angles ''v'' which satisfy the equality are | ||
+ | |||
+ | {{Displayed math||<math>v=u+2n\pi\qquad\text{and}\qquad v=-u+2n\pi\,,</math>}} | ||
+ | |||
+ | where ''n'' is an arbitrary integer. | ||
+ | |||
+ | Therefore, the equation | ||
+ | |||
+ | {{Displayed math||<math>\cos 5x=\cos (x+\pi/5)</math>}} | ||
+ | |||
+ | has the solutions | ||
+ | |||
+ | {{Displayed math||<math>\left\{\begin{align} 5x&=x+\frac{\pi}{5}+2n\pi\quad\text{or}\\[5pt] 5x &= -x-\frac{\pi}{5}+2n\pi\,\textrm{.}\end{align}\right.</math>}} | ||
+ | |||
+ | If we collect ''x'' onto one side, we end up with | ||
+ | |||
+ | {{Displayed math||<math>\left\{\begin{align} | ||
+ | x &= \frac{\pi}{20} + \frac{n\pi}{2}\,,\\[5pt] | ||
+ | x &= -\frac{\pi }{30}+\frac{n\pi}{3}\,, | ||
+ | \end{align}\right.</math>}} | ||
+ | |||
+ | where ''n'' is an arbitrary integer. |
Current revision
For a fixed value of u, an equality of the form
is satisfied by two angles v in the unit circle,
This means that all angles v which satisfy the equality are
![]() ![]() ![]() |
where n is an arbitrary integer.
Therefore, the equation
![]() ![]() |
has the solutions
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
If we collect x onto one side, we end up with
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
where n is an arbitrary integer.