Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Solution 4.4:6a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (14:16, 13 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
If we move everything over to the left-hand side,
If we move everything over to the left-hand side,
 +
{{Displayed math||<math>\sin x\cos 3x-2\sin x=0</math>}}
-
<math>\sin x\cos 3x-2\sin x=0</math>
+
we see that both terms have <math>\sin x</math> as a common factor which we can take out,
 +
{{Displayed math||<math>\sin x (\cos 3x-2) = 0\,\textrm{.}</math>}}
-
we see that both terms have
+
In this factorized version of the equation, we see the equation has a solution only when one of the factors <math>\sin x</math> or <math>\cos 3x-2</math> is zero. The factor <math>\sin x</math> is zero for all values of ''x'' that are given by
-
<math>\text{sin }x\text{ }</math>
+
-
as a common factor which we can take out:
+
 +
{{Displayed math||<math>x=n\pi\qquad\text{(n is an arbitrary integer)}</math>}}
-
<math>\text{sin }x\text{ }\left( \cos 3x-2 \right)=0</math>
+
(see exercise 3.5:2c). The other factor <math>\cos 3x-2</math> can never be zero because the value of a cosine always lies between <math>-1</math> and <math>1</math>, which gives that the largest value of <math>\cos 3x-2</math> is <math>-1</math>.
-
 
+
-
 
+
-
In this factorized version of the equation, we see the equation has a solution only when one of the factors
+
-
<math>\text{sin }x</math>
+
-
or
+
-
<math>\cos 3x-2</math>
+
-
is zero. The factor
+
-
<math>\text{sin }x</math>
+
-
is zero for all values of
+
-
<math>x</math>
+
-
that are given by
+
-
 
+
-
 
+
-
<math>x=n\pi </math>
+
-
(
+
-
<math>n</math>
+
-
an arbitrary integer)
+
-
 
+
-
(see exercise 3.5:2c). The other factor
+
-
<math>\cos 3x-2</math>
+
-
can never be zero because the value of a cosine always lies between
+
-
<math>-\text{1 }</math>
+
-
and
+
-
<math>\text{1}</math>, which gives that the largest value of
+
-
<math>\cos 3x-2</math>
+
-
is
+
-
<math>-\text{1 }</math>.
+
The solutions are therefore
The solutions are therefore
-
+
{{Displayed math||<math>x=n\pi\qquad\text{(n is an arbitrary integer).}</math>}}
-
<math>x=n\pi </math>
+
-
(
+
-
<math>n</math>
+
-
an arbitrary integer).
+

Current revision

If we move everything over to the left-hand side,

sinxcos3x2sinx=0

we see that both terms have sinx as a common factor which we can take out,

sinx(cos3x2)=0.

In this factorized version of the equation, we see the equation has a solution only when one of the factors sinx or cos3x2 is zero. The factor sinx is zero for all values of x that are given by

x=n(n is an arbitrary integer)

(see exercise 3.5:2c). The other factor cos3x2 can never be zero because the value of a cosine always lies between 1 and 1, which gives that the largest value of cos3x2 is 1.

The solutions are therefore

x=n(n is an arbitrary integer).