Solution 4.4:7b

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_4_7b-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:4_4_7b-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (07:44, 14 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we use the Pythagorean identity and write <math>\sin^2\!x</math> as <math>1-\cos^2\!x</math>, the whole equation can be written in terms of <math>\cos x</math>,
-
<center> [[Bild:4_4_7b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>2(1-\cos^2\!x) - 3\cos x = 0\,,</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:4_4_7b-2(2).gif]] </center>
+
or, in rearranged form,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>2\cos^2\!x + 3\cos x - 2 = 0\,\textrm{.}</math>}}
 +
 
 +
With the equation expressed entirely in terms of <math>\cos x</math>, we can introduce a new unknown variable <math>t=\cos x</math> and solve the equation with respect to ''t''. Expressed in terms of ''t'', the equation is
 +
 
 +
{{Displayed math||<math>2t^2+3t-2 = 0</math>}}
 +
 
 +
and this quadratic equation has the solutions <math>t=\tfrac{1}{2}</math> and
 +
<math>t=-2\,</math>.
 +
 
 +
In terms of ''x'', this means that either <math>\cos x = \tfrac{1}{2}</math> or <math>\cos x = -2</math>. The first case occurs when
 +
 
 +
{{Displayed math||<math>x=\pm \frac{\pi}{3}+2n\pi\qquad</math>(''n'' is an arbitrary integer),}}
 +
 
 +
whilst the equation <math>\cos x = -2</math> has no solutions at all (the values of cosine lie between -1 and 1).
 +
 
 +
The answer is that the equation has the solutions
 +
 
 +
{{Displayed math||<math>x = \pm\frac{\pi}{3} + 2n\pi\,,</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.

Current revision

If we use the Pythagorean identity and write \displaystyle \sin^2\!x as \displaystyle 1-\cos^2\!x, the whole equation can be written in terms of \displaystyle \cos x,

\displaystyle 2(1-\cos^2\!x) - 3\cos x = 0\,,

or, in rearranged form,

\displaystyle 2\cos^2\!x + 3\cos x - 2 = 0\,\textrm{.}

With the equation expressed entirely in terms of \displaystyle \cos x, we can introduce a new unknown variable \displaystyle t=\cos x and solve the equation with respect to t. Expressed in terms of t, the equation is

\displaystyle 2t^2+3t-2 = 0

and this quadratic equation has the solutions \displaystyle t=\tfrac{1}{2} and \displaystyle t=-2\,.

In terms of x, this means that either \displaystyle \cos x = \tfrac{1}{2} or \displaystyle \cos x = -2. The first case occurs when

\displaystyle x=\pm \frac{\pi}{3}+2n\pi\qquad(n is an arbitrary integer),

whilst the equation \displaystyle \cos x = -2 has no solutions at all (the values of cosine lie between -1 and 1).

The answer is that the equation has the solutions

\displaystyle x = \pm\frac{\pi}{3} + 2n\pi\,,

where n is an arbitrary integer.