Solution 4.4:8a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.4:8a moved to Solution 4.4:8a: Robot: moved page)
Current revision (08:12, 14 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we use the formula for double angles, <math>\sin 2x = 2\sin x\cos x</math>, and move all the terms over to the left-hand side, the equation becomes
-
<center> [[Image:4_4_8a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>2\sin x\cos x-\sqrt{2}\cos x=0\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:4_4_8a-2(2).gif]] </center>
+
Then, we see that we can take a factor <math>\cos x</math> out of both terms,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\cos x\,(2\sin x-\sqrt{2}) = 0</math>}}
 +
 
 +
and hence divide up the equation into two cases. The equation is satisfied either if <math>\cos x = 0</math> or if <math>2\sin x-\sqrt{2} = 0\,</math>.
 +
 
 +
 
 +
<math>\cos x = 0</math>:
 +
 
 +
This equation has the general solution
 +
 +
{{Displayed math||<math>x = \frac{\pi}{2}+n\pi\qquad</math>(''n'' is an arbitrary integer).}}
 +
 
 +
 
 +
<math>2\sin x-\sqrt{2}=0</math>:
 +
 
 +
If we collect <math>\sin x</math> on the left-hand side, we obtain the equation
 +
<math>\sin x = 1/\!\sqrt{2}</math>, which has the general solution
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
x &= \frac{\pi}{4}+2n\pi\,,\\[5pt]
 +
x &= \frac{3\pi}{4}+2n\pi\,,
 +
\end{align}\right.</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.
 +
 +
 
 +
The complete solution of the equation is
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
x &= \frac{\pi}{4}+2n\pi\,,\\[5pt]
 +
x &= \frac{\pi}{2}+n\pi\,,\\[5pt]
 +
x &= \frac{3\pi}{4}+2n\pi\,,
 +
\end{align}\right.</math>}}
 +
 
 +
where ''n'' is an arbitrary integer.

Current revision

If we use the formula for double angles, \displaystyle \sin 2x = 2\sin x\cos x, and move all the terms over to the left-hand side, the equation becomes

\displaystyle 2\sin x\cos x-\sqrt{2}\cos x=0\,\textrm{.}

Then, we see that we can take a factor \displaystyle \cos x out of both terms,

\displaystyle \cos x\,(2\sin x-\sqrt{2}) = 0

and hence divide up the equation into two cases. The equation is satisfied either if \displaystyle \cos x = 0 or if \displaystyle 2\sin x-\sqrt{2} = 0\,.


\displaystyle \cos x = 0:

This equation has the general solution

\displaystyle x = \frac{\pi}{2}+n\pi\qquad(n is an arbitrary integer).


\displaystyle 2\sin x-\sqrt{2}=0:

If we collect \displaystyle \sin x on the left-hand side, we obtain the equation \displaystyle \sin x = 1/\!\sqrt{2}, which has the general solution

\displaystyle \left\{\begin{align}

x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] x &= \frac{3\pi}{4}+2n\pi\,, \end{align}\right.

where n is an arbitrary integer.


The complete solution of the equation is

\displaystyle \left\{\begin{align}

x &= \frac{\pi}{4}+2n\pi\,,\\[5pt] x &= \frac{\pi}{2}+n\pi\,,\\[5pt] x &= \frac{3\pi}{4}+2n\pi\,, \end{align}\right.

where n is an arbitrary integer.