3.4 Logarithmic equations

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (22:29, 28 October 2008) (edit) (undo)
 
(22 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Mall:Vald flik|[[3.4 Logaritmekvationer|Teori]]}}
+
{{Selected tab|[[3.4 Logarithmic equations|Theory]]}}
-
{{Mall:Ej vald flik|[[3.4 Övningar|Övningar]]}}
+
{{Not selected tab|[[3.4 Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Contents:'''
-
* Logaritmekvationer
+
* Logarithmic equations
-
* Exponentialekvationer
+
* Exponential equations
-
* Falska rötter.
+
* Spurious roots
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Learning outcomes:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
After this section, you will have learned to:
-
* Lösa ekvationer som innehåller logaritm- eller exponentialuttryck och som kan reduceras till första- eller andragradsekvationer.
+
* Solve equations that contain logarithm or exponential expressions that can be reduced to first or second order equations.
-
* Hantera falska rötter och veta när de uppstår.
+
* Deal with spurious roots, and know when they arise.
 +
* Determine which of two logarithmic expressions is the largest by means of a comparison of bases argument.
}}
}}
-
== Grundekvationer ==
+
== Basic Equations ==
-
Ekvationer där logaritmer behövs eller är inblandade förekommer i många olika fall. Först ges några exempel där lösningen ges nästan direkt genom definitionen av logaritm, dvs.
+
Equations involving logarithms can vary a lot. Here are two simple examples which we can solve straight away using the definition of the logarithm:
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
10^x = y\quad&\Leftrightarrow\quad x = \lg y\\
10^x = y\quad&\Leftrightarrow\quad x = \lg y\\
-
e^x = y\quad&\Leftrightarrow\quad x = \ln y\\
+
e^x = y\quad&\Leftrightarrow\quad x = \ln y \mbox{.}\\
\end{align*}</math>}}
\end{align*}</math>}}
-
(Vi använder oss här enbart av 10-logaritmer eller naturliga logaritmer.)
+
We consider only 10-logarithms or natural logarithms, though the methods can just as easily be applied in the case of logarithms with an arbitrary base.
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
''' Example 1'''
-
Lös ekvationerna
+
We solve the following equations for <math>x</math>:
<ol type="a">
<ol type="a">
-
<li><math>10^x = 537\quad</math> har lösningen <math>x = \lg 537</math>.</li>
+
<li><math>10^x = 537\quad</math> has a solution <math>x = \lg 537</math>.</li>
-
<li><math>10^{5x} = 537\quad</math> ger att <math>5x
+
<li><math>10^{5x} = 537\quad</math> gives <math>5x
-
= \lg 537</math>, dvs. <math>x=\frac{1}{5} \lg 537</math>.</li>
+
= \lg 537</math>, i.e. <math>x=\frac{1}{5} \lg 537</math>.</li>
<li><math>\frac{3}{e^x} = 5 \quad
<li><math>\frac{3}{e^x} = 5 \quad
-
</math> Multiplikation av båda led med <math>e^x
+
</math>. Multiplication of both sides with <math>e^x
-
</math> och division med 5 ger att <math>\tfrac{3}{5}=e^x
+
</math> and division by 5 gives <math>\tfrac{3}{5}=e^x
-
</math>, vilket betyder att <math>x=\ln\tfrac{3}{5}</math>.</li>
+
</math>, which means that <math>x=\ln\tfrac{3}{5}</math>.</li>
-
<li><math>\lg x = 3 \quad</math> Definitionen ger direkt att <math>
+
<li><math>\lg x = 3 \quad</math>. The definition gives directly <math>
x=10^3 = 1000</math>.</li>
x=10^3 = 1000</math>.</li>
-
<li><math>\lg(2x-4) = 2 \quad</math> Från definitionen har vi att <math>
+
<li><math>\lg(2x-4) = 2 \quad</math>. From the definition we have <math>
-
2x-4 = 10^2 = 100</math> och då följer att <math>x = 52</math>.</li>
+
2x-4 = 10^2 = 100</math> and it follows that <math>x = 52</math>.</li>
</ol>
</ol>
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
''' Example 2'''
<ol type="a">
<ol type="a">
-
<li> Lös ekvationen <math>\,(\sqrt{10}\,)^x = 25</math>.
+
<li> Solve the equation <math>\,(\sqrt{10}\,)^x = 25</math>.
<br>
<br>
<br>
<br>
-
Eftersom <math>\sqrt{10} = 10^{1/2}</math> är vänsterledet lika med <math>(\sqrt{10}\,)^x = (10^{1/2})^x = 10^{x/2}</math> och ekvationen lyder
+
Since <math>\sqrt{10} = 10^{1/2}</math> the left-hand side is equal to <math>(\sqrt{10}\,)^x = (10^{1/2})^x = 10^{x/2}</math> and the equation becomes
-
{{Fristående formel||<math>10^{x/2} = 25\,\mbox{.}</math>}}
+
{{Displayed math||<math>10^{x/2} = 25\,\mbox{.}</math>}}
-
Denna grundekvation har lösningen <math>\frac{x}{2} = \lg 25</math>, dvs. <math>x = 2 \lg 25</math>.</li>
+
This equation has a solution <math>\frac{x}{2} = \lg 25</math>, ie. <math>x = 2 \lg 25</math>.</li>
-
<li>Lös ekvationen <math>\,\frac{3 \ln 2x}{2} + 1 = \frac{1}{2}</math>.
+
<li>Solve the equation <math>\,\frac{3 \ln 2x}{2} + 1 = \frac{1}{2}</math>.
<br>
<br>
<br>
<br>
-
Multiplicera båda led med 2 och subtrahera sedan 2 från båda led
+
Multiply both sides by 2 and then subtract 2 from both sides to get
-
{{Fristående formel||<math> 3 \ln 2x = -1\,\mbox{.}</math>}}
+
{{Displayed math||<math> 3 \ln 2x = -1\,\mbox{.}</math>}}
-
Dividera båda led med 3
+
Dividing both sides by 3 gives
-
{{Fristående formel||<math> \ln 2x = -\frac{1}{3}\,\mbox{.}</math>}}
+
{{Displayed math||<math> \ln 2x = -\frac{1}{3}\,\mbox{.}</math>}}
-
Nu ger definitionen direkt att <math>2x = e^{-1/3}</math>, vilket betyder att
+
Now, the definition directly gives <math>2x = e^{-1/3}</math>, so that
-
{{Fristående formel||<math> x = {\textstyle\frac{1}{2}} e^{-1/3} = \frac{1}{2e^{1/3}}\,\mbox{.} </math>}}</li>
+
{{Displayed math||<math> x = {\textstyle\frac{1}{2}} e^{-1/3} = \frac{1}{2e^{1/3}}\,\mbox{.} </math>}}</li>
</ol>
</ol>
</div>
</div>
-
I många praktiska tillämpningar rörande exponentiell tillväxt eller avtagande dyker det upp ekvationer av typen
+
In many practical applications of exponential growth or decline there appear equations of the type
-
{{Fristående formel||<math>a^x = b\,\mbox{,}</math>}}
+
{{Displayed math||<math>a^x = b\,\mbox{,}</math>}}
-
där <math>a</math> och <math>b</math> är positiva tal. Dessa ekvationer löses enklast genom att ta logaritmen för båda led
+
where <math>a</math> and <math>b</math> are positive numbers. These equations are best solved by taking the logarithm of both sides so that
-
{{Fristående formel||<math>\lg a^x = \lg b</math>}}
+
{{Displayed math||<math>\lg a^x = \lg b</math>}}
-
och använda logaritmlagen för potenser
+
Then by the law of logarithms,
-
{{Fristående formel||<math>x \cdot \lg a = \lg b</math>}}
+
{{Displayed math||<math>x \cdot \lg a = \lg b</math>}}
-
vilket ger lösningen <math>\ x = \displaystyle \frac{\lg b}{\lg a}</math>.
+
which gives the solution <math>\ x = \displaystyle \frac{\lg b}{\lg a}</math>.
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Example 3'''
<ol type="a">
<ol type="a">
-
<li>Lös ekvationen <math>\,3^x = 20</math>.
+
<li>Solve the equation <math>\,3^x = 20</math>.
<br>
<br>
<br>
<br>
-
Logaritmera båda led
+
Take logarithms of both sides to get
-
{{Fristående formel||<math>\lg 3^x = \lg 20\,\mbox{.}</math>}}
+
{{Displayed math||<math>\lg 3^x = \lg 20\,\mbox{.}</math>}}
-
Vänsterledet kan skrivas som <math>\lg 3^x = x \cdot \lg 3</math> och då får vi att
+
The left-hand side can be written as <math>\lg 3^x = x \cdot \lg 3</math> giving
-
{{Fristående formel||<math>x = \displaystyle \frac{\lg 20}{\lg 3} \quad ({}\approx 2{,}727)\,\mbox{.}</math>}}</li>
+
{{Displayed math||<math>x = \displaystyle \frac{\lg 20}{\lg 3} \quad ({}\approx 2\textrm{.}727)\,\mbox{.}</math>}}</li>
-
<li>Lös ekvationen <math>\ 5000 \cdot 1{,}05^x = 10\,000</math>.
+
<li>Solve the equation <math>\ 5000 \cdot 1\textrm{.}05^x = 10\,000</math>.
<br>
<br>
<br>
<br>
-
Dividera båda led med 5000
+
Divide both sides by 5000 to get
-
{{Fristående formel||<math>1{,}05^x = \displaystyle \frac{ 10\,000}{5\,000} = 2\,\mbox{.}</math>}}
+
{{Displayed math||<math>1\textrm{.}05^x = \displaystyle \frac{ 10\,000}{5\,000} = 2\,\mbox{.}</math>}}
-
Denna ekvation löser vi genom att logaritmera båda led med lg och skriva om vänsterledet som <math>\lg 1{,}05^x = x\cdot\lg 1{,}05</math>,
+
This equation can be solved by taking the lg logarithm of both sides of and rewriting the left-hand side as <math>\lg 1\textrm{.}05^x = x\cdot\lg 1\textrm{.}05</math>. Then
-
{{Fristående formel||<math>x = \frac{\lg 2}{\lg 1{,}05} \quad ({}\approx 14{,}2)\,\mbox{.}</math>}}</li>
+
{{Displayed math||<math>x = \frac{\lg 2}{\lg 1\textrm{.}05} \quad ({}\approx 14\textrm{.}2)\,\mbox{.}</math>}}</li>
</ol>
</ol>
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
''' Example 4'''
<ol type="a">
<ol type="a">
-
<li>Lös ekvationen <math>\ 2^x \cdot 3^x = 5</math>.
+
<li>Solve the equation <math>\ 2^x \cdot 3^x = 5</math>.
<br>
<br>
<br>
<br>
-
Vänsterledet kan skrivas om med potenslagarna till <math>2^x\cdot 3^x=(2 \cdot 3)^x</math> och ekvationen blir
+
The left-hand side can be rewritten using the laws of exponents giving <math>2^x\cdot 3^x=(2 \cdot 3)^x</math> and the equation becomes
-
{{Fristående formel||<math>6^x = 5\,\mbox{.}</math>}}
+
{{Displayed math||<math>6^x = 5\,\mbox{.}</math>}}
-
Denna ekvation löser vi på vanligt sätt med logaritmering och får att
+
This equation is solved in the usual way by taking logarithms giving
-
{{Fristående formel||<math>x = \frac{\lg 5}{\lg 6}\quad ({}\approx 0{,}898)\,\mbox{.}</math>}}</li>
+
{{Displayed math||<math>x = \frac{\lg 5}{\lg 6}\quad ({}\approx 0\textrm{.}898)\,\mbox{.}</math>}}</li>
-
<li>Lös ekvationen <math>\ 5^{2x + 1} = 3^{5x}</math>.
+
<li>Solve the equation <math>\ 5^{2x + 1} = 3^{5x}</math>.
<br>
<br>
<br>
<br>
-
Logaritmera båda led och använd logaritmlagen <math>\lg a^b = b \cdot \lg a</math>
+
Take logarithms of both sides and use the laws of logarithms to get
-
{{Fristående formel||<math>\eqalign{(2x+1)\lg 5 &= 5x \cdot \lg 3\,\mbox{,}\cr 2x \cdot \lg 5 + \lg 5 &= 5x \cdot \lg 3\,\mbox{.}\cr}</math>}}
+
{{Displayed math||<math>\eqalign{(2x+1)\lg 5 &= 5x \cdot \lg 3\,\cr \Rightarrow 2x \cdot \lg 5 + \lg 5 &= 5x \cdot \lg 3\,\mbox{.}\cr}</math>}}
-
Samla <math>x</math> i ena ledet
+
Collecting <math>x</math> to one side gives
-
{{Fristående formel||<math>\eqalign{\lg 5 &= 5x \cdot \lg 3 -2x \cdot \lg 5\,\mbox{,}\cr \lg 5 &= x\,(5 \lg 3 -2 \lg 5)\,\mbox{.}\cr}</math>}}
+
{{Displayed math||<math>\eqalign{\lg 5 &= 5x \cdot \lg 3 -2x \cdot \lg 5\,\cr \Rightarrow \lg 5 &= x\,(5 \lg 3 -2 \lg 5)\,\mbox{.}\cr}</math>}}
-
Lösningen är
+
The solution is then
-
{{Fristående formel||<math>x = \frac{\lg 5}{5 \lg 3 -2 \lg 5}\,\mbox{.}</math>}}</li>
+
{{Displayed math||<math>x = \frac{\lg 5}{5 \lg 3 -2 \lg 5}\,\mbox{.}</math>}}</li>
</ol>
</ol>
Line 135: Line 136:
-
== Några mer komplicerade ekvationer ==
+
== Some more complicated equations ==
-
Ekvationer som innehåller exponential- eller logaritmuttryck kan ibland behandlas som förstagrads- eller andragradsekvationer genom att betrakta "<math>\ln x</math>" eller "<math>e^x</math>" som obekant.
+
Equations containing exponential or logarithmic expressions can sometimes be treated as first order or second order equations by considering "<math>\ln x</math>" or "<math>e^x</math>" as the unknown variable.
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Example 5'''
-
Lös ekvationen <math>\,\frac{6e^x}{3e^x+1}=\frac{5}{e^{-x}+2}</math>.
+
Solve the equation <math>\,\frac{6e^x}{3e^x+1}=\frac{5}{e^{-x}+2}</math>.
<br>
<br>
<br>
<br>
-
Multiplicera båda led med <math>3e^x+1</math> och <math>e^{-x}+2</math> för att få bort nämnarna
+
Multiply both sides by <math>3e^x+1</math> and <math>e^{-x}+2</math> to eliminate the denominators, so that
-
{{Fristående formel||<math>6e^x(e^{-x}+2) = 5(3e^x+1)\,\mbox{.}</math>}}
+
{{Displayed math||<math>6e^x(e^{-x}+2) = 5(3e^x+1)\,\mbox{.}</math>}}
-
Notera att eftersom <math>e^x</math> och <math>e^{-x}</math> alltid är positiva oavsett värdet på <math>x</math> så multiplicerar vi alltså ekvationen med faktorer <math>3e^x+1</math> och <math>e^{-x} +2</math> som är skilda från noll, så detta steg riskerar inte att introducera nya (falska) rötter till ekvationen.
+
In this last step we have multiplied the equation by factors <math>3e^x+1</math> and <math>e^{-x} +2</math>. Both of these factors are different from zero, so this step cannot introduce new (spurious) roots of the equation.
-
Förenkla båda led
+
Simplify both sides of the equation to get
-
{{Fristående formel||<math>6+12e^x = 15e^x+5\,\mbox{,}</math>}}
+
{{Displayed math||<math>6+12e^x = 15e^x+5\,\mbox{.}</math>}}
-
där vi använt att <math>e^{-x} \cdot e^x = e^{-x + x} = e^0 = 1</math>. Betraktar vi nu <math>e^x</math> som obekant är ekvationen väsentligen en förstagradsekvation som har lösningen
+
Here we have used <math>e^{-x} \cdot e^x = e^{-x + x} = e^0 = 1</math>. If we treat <math>e^x</math> as the unknown variable, the equation is essentially a first order equation which has a solution
-
{{Fristående formel||<math>e^x=\frac{1}{3}\,\mbox{.}</math>}}
+
{{Displayed math||<math>e^x=\frac{1}{3}\,\mbox{.}</math>}}
-
En logaritmering ger sedan svaret
+
Taking logarithms then gives the answer:
-
{{Fristående formel||<math>x=\ln\frac{1}{3}= \ln 3^{-1} = -1 \cdot \ln 3 = -\ln 3\,\mbox{.}</math>}}
+
{{Displayed math||<math>x=\ln\frac{1}{3}= \ln 3^{-1} = -1 \cdot \ln 3 = -\ln 3\,\mbox{.}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 6'''
+
''' Example 6'''
-
Lös ekvationen <math>\,\frac{1}{\ln x} + \ln\frac{1}{x} = 1</math>.
+
Solve the equation <math>\,\frac{1}{\ln x} + \ln\frac{1}{x} = 1</math>.
<br>
<br>
<br>
<br>
-
Termen <math>\ln\frac{1}{x}</math> kan skrivas som <math>\ln\frac{1}{x} = \ln x^{-1} = -1 \cdot \ln x = - \ln x</math> och då blir ekvationen
+
The term <math>\ln\frac{1}{x}</math> can be written as <math>\ln\frac{1}{x} = \ln x^{-1} = -1 \cdot \ln x = - \ln x</math> and then the equation becomes
-
{{Fristående formel||<math>\frac{1}{\ln x} - \ln x = 1\,\mbox{,}</math>}}
+
{{Displayed math||<math>\frac{1}{\ln x} - \ln x = 1\,\mbox{.}</math>}}
-
där vi kan betrakta <math>\ln x</math> som en ny obekant. Multiplicerar vi båda led med <math>\ln x</math> (som är skild från noll när <math>x \neq 1</math>) får vi en andragradsekvation i <math>\ln x</math>
+
We multiply both sides by <math>\ln x</math> (which is different from zero when <math>x \neq 1</math>, and <math>x = 1</math> is clearly not a solution) and this gives us a quadratic equation in <math>\ln x</math>:
-
{{Fristående formel||<math>1 - (\ln x)^2 = \ln x\,\mbox{,}</math>}}
+
{{Displayed math||<math>1 - (\ln x)^2 = \ln x\,</math>}}
-
{{Fristående formel||<math> (\ln x)^2 + \ln x - 1 = 0\,\mbox{.}</math>}}
+
{{Displayed math||<math> \Rightarrow (\ln x)^2 + \ln x - 1 = 0\,\mbox{.}</math>}}
-
Kvadratkomplettering av vänsterledet
+
Completing the square on the left-hand side we see that
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\textstyle (\ln x)^2 + \ln x -1
\textstyle (\ln x)^2 + \ln x -1
&= \bigl( \ln x + \frac{1}{2} \bigr)^2 - \bigl(\frac{1}{2} \bigr)^2 - 1\\
&= \bigl( \ln x + \frac{1}{2} \bigr)^2 - \bigl(\frac{1}{2} \bigr)^2 - 1\\
-
&= \bigl( \ln x + \frac{1}{2} \bigr)^2 - \frac{5}{4}\\
+
&= \bigl( \ln x + \frac{1}{2} \bigr)^2 - \frac{5}{4} \mbox{.}\\
\end{align*}</math>}}
\end{align*}</math>}}
-
följt av rotutdragning ger att
+
Then by taking roots,
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\ln x = -\frac{1}{2} \pm \frac{\sqrt{5}}{2} \,\mbox{.}</math>}}
\ln x = -\frac{1}{2} \pm \frac{\sqrt{5}}{2} \,\mbox{.}</math>}}
-
Detta betyder att ekvationen har två lösningar
+
This means that the equation has two solutions
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
x= e^{(-1 + \sqrt{5})/2}
x= e^{(-1 + \sqrt{5})/2}
-
\quad \mbox{och} \quad
+
\quad \mbox{or} \quad
x= e^{-(1+\sqrt{5})/2}\,\mbox{.}</math>}}
x= e^{-(1+\sqrt{5})/2}\,\mbox{.}</math>}}
</div>
</div>
-
== Falska rötter ==
+
== Spurious roots ==
-
När man löser ekvationer gäller det också att tänka på att argument till logaritmer måste vara positiva och att uttryck av typen <math>e^{(\ldots)}</math> bara kan anta positiva värden. Risken är annars att man får med falska rötter.
+
When you solve equations you should also bear in mind that the arguments of logarithms have to be positive and that terms of the type <math>e^{(\ldots)}</math> can only have positive values. In other words we must be careful to make sure that our answer makes sense.
<div class="exempel">
<div class="exempel">
-
'''Exempel 7'''
+
''' Example 7'''
-
Lös ekvationen <math>\,\ln(4x^2 -2x) = \ln (1-2x)</math>.
+
Solve the equation <math>\,\ln(4x^2 -2x) = \ln (1-2x)</math>.
<br>
<br>
<br>
<br>
-
För att ekvationen ska vara uppfylld måste argumenten <math>4x^2-2x</math> och <math>1-2x</math> vara lika,
+
For the equation to be satisfied the arguments <math>4x^2-2x</math> and <math>1-2x</math> must be be positive and equal i.e.
 +
{{Displayed math||<math>4x^2 - 2x = 1 - 2x\mbox{.}\,,</math>|<math>(*)</math>}}
-
{{Fristående formel||<math>4x^2 - 2x = 1 - 2x\,,</math>|<math>(*)</math>}}
+
We solve the equation <math>(*)</math> by moving all of the terms to one side
-
och dessutom positiva. Vi löser ekvationen <math>(*)</math> genom att flytta över alla termer i ena ledet
+
{{Displayed math||<math>4x^2 - 1= 0</math>}}
-
{{Fristående formel||<math>4x^2 - 1= 0</math>}}
+
and taking the root. This gives
-
och använder rotutdragning. Detta ger att
+
{{Displayed math||<math>
-
 
+
-
{{Fristående formel||<math>
+
\textstyle x= -\frac{1}{2}
\textstyle x= -\frac{1}{2}
-
\quad\mbox{och}\quad
+
\quad\mbox{or}\quad
x = \frac{1}{2} \; \mbox{.}</math>}}
x = \frac{1}{2} \; \mbox{.}</math>}}
-
Vi kontrollerar nu om båda led i <math>(*)</math> är positiva
+
We now check if both sides of <math>(*)</math> are positive
-
* Om <math>x= -\tfrac{1}{2}</math> blir båda led lika med <math>4x^2 - 2x = 1-2x = 1-2 \cdot \bigl(-\tfrac{1}{2}\bigr) = 1+1 = 2 > 0</math>.
+
* If <math>x= -\tfrac{1}{2}</math> then both are sides are equal to <math>4x^2 - 2x = 1-2x = 1-2 \cdot \bigl(-\tfrac{1}{2}\bigr) = 1+1 = 2 > 0</math>.
-
* Om <math>x= \tfrac{1}{2}</math> blir båda led lika med <math>4x^2 - 2x = 1-2x = 1-2 \cdot \tfrac{1}{2} = 1-1 = 0 \not > 0</math>.
+
* If <math>x= \tfrac{1}{2}</math> then both are sides are equal to <math>4x^2 - 2x = 1-2x = 1-2 \cdot \tfrac{1}{2} = 1-1 = 0 \not > 0</math>.
-
Alltså har logaritmekvationen bara en lösning <math>x= -\frac{1}{2}</math>.
+
So the logarithmic equation has only one solution <math>x= -\frac{1}{2}</math>.
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 8'''
+
''' Example 8'''
-
Lös ekvationen <math>\,e^{2x} - e^{x} = \frac{1}{2}</math>.
+
Solve the equation <math>\,e^{2x} - e^{x} = \frac{1}{2}</math>.
<br>
<br>
<br>
<br>
-
Den första termen kan vi skriva som <math>e^{2x} = (e^x)^2</math>. Hela ekvationen är alltså en andragradsekvation med <math>e^x</math> som obekant
+
The first term can be written as <math>e^{2x} = (e^x)^2</math>. The whole equation is a quadratic with <math>e^x</math> as the unknown i.e.
-
{{Fristående formel||<math>(e^x)^2 - e^x = \tfrac{1}{2}\,\mbox{.}</math>}}
+
{{Displayed math||<math>(e^x)^2 - e^x = \tfrac{1}{2}\,\mbox{.}</math>}}
-
Ekvationen kan vara lite enklare att hantera om vi skriver <math>t</math> istället för <math>e^x</math>,
+
The equation can be a little easier to manage if we write <math>t</math> instead of <math>e^x</math>, so that we try and solve
-
{{Fristående formel||<math>t^2 -t = \tfrac{1}{2}\,\mbox{.}</math>}}
+
{{Displayed math||<math>t^2 -t = \tfrac{1}{2}\,\mbox{.}</math>}}
-
Kvadratkomplettera vänsterledet
+
Completing the square on the left-hand side gives
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\textstyle \bigl(t-\frac{1}{2}\bigr)^2 - \bigl(\frac{1}{2}\bigr)^2
\textstyle \bigl(t-\frac{1}{2}\bigr)^2 - \bigl(\frac{1}{2}\bigr)^2
-
&= \frac{1}{2}\,\mbox{,}\\
+
&= \frac{1}{2}\,\\
-
\bigl(t-\frac{1}{2}\bigr)^2
+
\Rightarrow \bigl(t-\frac{1}{2}\bigr)^2
-
&= \frac{3}{4}\,\mbox{,}\\
+
&= \frac{3}{4}\,\mbox{.}\\
\end{align*}</math>}}
\end{align*}</math>}}
-
vilket ger lösningarna
+
so that
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
t=\frac{1}{2} - \frac{\sqrt{3}}{2}
t=\frac{1}{2} - \frac{\sqrt{3}}{2}
-
\quad\mbox{och}\quad
+
\quad\mbox{or}\quad
t=\frac{1}{2} + \frac{\sqrt{3}}{2} \, \mbox{.}</math>}}
t=\frac{1}{2} + \frac{\sqrt{3}}{2} \, \mbox{.}</math>}}
-
Eftersom <math>\sqrt3 > 1</math> så är <math>\frac{1}{2}-\frac{1}{2}\sqrt3 <0</math> och det är bara <math>t= \frac{1}{2}+\frac{1}{2}\sqrt3</math> som ger en lösning till den ursprungliga ekvationen eftersom <math>e^x</math> alltid är positiv. Logaritmering ger slutligen att
+
Since <math>\sqrt3 > 1</math>, <math>\frac{1}{2}-\frac{1}{2}\sqrt3 <0</math>. Therefore it is only <math>t= \frac{1}{2}+\frac{1}{2}\sqrt3</math> that provides a solution to the original equation because <math>e^x</math> is always positive. Taking logarithms finally gives
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
x = \ln \Bigl(\,\frac{1}{2}+\frac{\sqrt3}{2}\,\Bigr)</math>}}
x = \ln \Bigl(\,\frac{1}{2}+\frac{\sqrt3}{2}\,\Bigr)</math>}}
-
är den enda lösningen till ekvationen.
+
as the only solution to the equation.
</div>
</div>
-
[[3.4 Övningar|Övningar]]
+
[[3.4 Exercises|Exercises]]
<div class="inforuta" style="width:580px;">
<div class="inforuta" style="width:580px;">
-
'''Råd för inläsning'''
+
'''Study advice'''
-
'''Grund- och slutprov'''
+
'''The basic and final tests'''
-
Efter att du har läst texten och arbetat med övningarna ska du göra grund- och slutprovet för att bli godkänd på detta avsnitt. Du hittar länken till proven i din student lounge.
+
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
-
'''Tänk på att:'''
+
'''Keep in mind that:'''
-
Du kan behöva lägga ner mycket tid på logaritmer.
+
You may need to spend some time studying logarithms.
-
Logaritmer brukar behandlas översiktligt i gymnasiet. Därför brukar många högskolestudenter stöta på problem när det gäller att räkna med logaritmer.
+
Logarithms are not usually dealt with in detail in high school. Therefore, many college students tend to encounter problems when it comes to calculations with logarithms.
</div>
</div>

Current revision

       Theory          Exercises      

Contents:

  • Logarithmic equations
  • Exponential equations
  • Spurious roots

Learning outcomes:

After this section, you will have learned to:

  • Solve equations that contain logarithm or exponential expressions that can be reduced to first or second order equations.
  • Deal with spurious roots, and know when they arise.
  • Determine which of two logarithmic expressions is the largest by means of a comparison of bases argument.

Basic Equations

Equations involving logarithms can vary a lot. Here are two simple examples which we can solve straight away using the definition of the logarithm:

\displaystyle \begin{align*}
   10^x = y\quad&\Leftrightarrow\quad x = \lg y\\
   e^x = y\quad&\Leftrightarrow\quad x = \ln y \mbox{.}\\
 \end{align*}

We consider only 10-logarithms or natural logarithms, though the methods can just as easily be applied in the case of logarithms with an arbitrary base.

Example 1

We solve the following equations for \displaystyle x:

  1. \displaystyle 10^x = 537\quad has a solution \displaystyle x = \lg 537.
  2. \displaystyle 10^{5x} = 537\quad gives \displaystyle 5x = \lg 537, i.e. \displaystyle x=\frac{1}{5} \lg 537.
  3. \displaystyle \frac{3}{e^x} = 5 \quad . Multiplication of both sides with \displaystyle e^x and division by 5 gives \displaystyle \tfrac{3}{5}=e^x , which means that \displaystyle x=\ln\tfrac{3}{5}.
  4. \displaystyle \lg x = 3 \quad. The definition gives directly \displaystyle x=10^3 = 1000.
  5. \displaystyle \lg(2x-4) = 2 \quad. From the definition we have \displaystyle 2x-4 = 10^2 = 100 and it follows that \displaystyle x = 52.

Example 2

  1. Solve the equation \displaystyle \,(\sqrt{10}\,)^x = 25.

    Since \displaystyle \sqrt{10} = 10^{1/2} the left-hand side is equal to \displaystyle (\sqrt{10}\,)^x = (10^{1/2})^x = 10^{x/2} and the equation becomes
    \displaystyle 10^{x/2} = 25\,\mbox{.}
    This equation has a solution \displaystyle \frac{x}{2} = \lg 25, ie. \displaystyle x = 2 \lg 25.
  2. Solve the equation \displaystyle \,\frac{3 \ln 2x}{2} + 1 = \frac{1}{2}.

    Multiply both sides by 2 and then subtract 2 from both sides to get
    \displaystyle 3 \ln 2x = -1\,\mbox{.}

    Dividing both sides by 3 gives

    \displaystyle \ln 2x = -\frac{1}{3}\,\mbox{.}

    Now, the definition directly gives \displaystyle 2x = e^{-1/3}, so that

    \displaystyle x = {\textstyle\frac{1}{2}} e^{-1/3} = \frac{1}{2e^{1/3}}\,\mbox{.}

In many practical applications of exponential growth or decline there appear equations of the type

\displaystyle a^x = b\,\mbox{,}

where \displaystyle a and \displaystyle b are positive numbers. These equations are best solved by taking the logarithm of both sides so that

\displaystyle \lg a^x = \lg b

Then by the law of logarithms,

\displaystyle x \cdot \lg a = \lg b

which gives the solution \displaystyle \ x = \displaystyle \frac{\lg b}{\lg a}.

Example 3

  1. Solve the equation \displaystyle \,3^x = 20.

    Take logarithms of both sides to get
    \displaystyle \lg 3^x = \lg 20\,\mbox{.}

    The left-hand side can be written as \displaystyle \lg 3^x = x \cdot \lg 3 giving

    \displaystyle x = \displaystyle \frac{\lg 20}{\lg 3} \quad ({}\approx 2\textrm{.}727)\,\mbox{.}
  2. Solve the equation \displaystyle \ 5000 \cdot 1\textrm{.}05^x = 10\,000.

    Divide both sides by 5000 to get
    \displaystyle 1\textrm{.}05^x = \displaystyle \frac{ 10\,000}{5\,000} = 2\,\mbox{.}

    This equation can be solved by taking the lg logarithm of both sides of and rewriting the left-hand side as \displaystyle \lg 1\textrm{.}05^x = x\cdot\lg 1\textrm{.}05. Then

    \displaystyle x = \frac{\lg 2}{\lg 1\textrm{.}05} \quad ({}\approx 14\textrm{.}2)\,\mbox{.}

Example 4

  1. Solve the equation \displaystyle \ 2^x \cdot 3^x = 5.

    The left-hand side can be rewritten using the laws of exponents giving \displaystyle 2^x\cdot 3^x=(2 \cdot 3)^x and the equation becomes
    \displaystyle 6^x = 5\,\mbox{.}

    This equation is solved in the usual way by taking logarithms giving

    \displaystyle x = \frac{\lg 5}{\lg 6}\quad ({}\approx 0\textrm{.}898)\,\mbox{.}
  2. Solve the equation \displaystyle \ 5^{2x + 1} = 3^{5x}.

    Take logarithms of both sides and use the laws of logarithms to get
    \displaystyle \eqalign{(2x+1)\lg 5 &= 5x \cdot \lg 3\,\cr \Rightarrow 2x \cdot \lg 5 + \lg 5 &= 5x \cdot \lg 3\,\mbox{.}\cr}

    Collecting \displaystyle x to one side gives

    \displaystyle \eqalign{\lg 5 &= 5x \cdot \lg 3 -2x \cdot \lg 5\,\cr \Rightarrow \lg 5 &= x\,(5 \lg 3 -2 \lg 5)\,\mbox{.}\cr}

    The solution is then

    \displaystyle x = \frac{\lg 5}{5 \lg 3 -2 \lg 5}\,\mbox{.}


Some more complicated equations

Equations containing exponential or logarithmic expressions can sometimes be treated as first order or second order equations by considering "\displaystyle \ln x" or "\displaystyle e^x" as the unknown variable.

Example 5

Solve the equation \displaystyle \,\frac{6e^x}{3e^x+1}=\frac{5}{e^{-x}+2}.

Multiply both sides by \displaystyle 3e^x+1 and \displaystyle e^{-x}+2 to eliminate the denominators, so that

\displaystyle 6e^x(e^{-x}+2) = 5(3e^x+1)\,\mbox{.}

In this last step we have multiplied the equation by factors \displaystyle 3e^x+1 and \displaystyle e^{-x} +2. Both of these factors are different from zero, so this step cannot introduce new (spurious) roots of the equation.

Simplify both sides of the equation to get

\displaystyle 6+12e^x = 15e^x+5\,\mbox{.}

Here we have used \displaystyle e^{-x} \cdot e^x = e^{-x + x} = e^0 = 1. If we treat \displaystyle e^x as the unknown variable, the equation is essentially a first order equation which has a solution

\displaystyle e^x=\frac{1}{3}\,\mbox{.}

Taking logarithms then gives the answer:

\displaystyle x=\ln\frac{1}{3}= \ln 3^{-1} = -1 \cdot \ln 3 = -\ln 3\,\mbox{.}

Example 6

Solve the equation \displaystyle \,\frac{1}{\ln x} + \ln\frac{1}{x} = 1.

The term \displaystyle \ln\frac{1}{x} can be written as \displaystyle \ln\frac{1}{x} = \ln x^{-1} = -1 \cdot \ln x = - \ln x and then the equation becomes

\displaystyle \frac{1}{\ln x} - \ln x = 1\,\mbox{.}

We multiply both sides by \displaystyle \ln x (which is different from zero when \displaystyle x \neq 1, and \displaystyle x = 1 is clearly not a solution) and this gives us a quadratic equation in \displaystyle \ln x:

\displaystyle 1 - (\ln x)^2 = \ln x\,
\displaystyle \Rightarrow (\ln x)^2 + \ln x - 1 = 0\,\mbox{.}

Completing the square on the left-hand side we see that

\displaystyle \begin{align*}
   \textstyle (\ln x)^2 + \ln x -1
     &= \bigl( \ln x + \frac{1}{2} \bigr)^2 - \bigl(\frac{1}{2} \bigr)^2 - 1\\
     &= \bigl( \ln x + \frac{1}{2} \bigr)^2 - \frac{5}{4} \mbox{.}\\
 \end{align*}

Then by taking roots,

\displaystyle
 \ln x = -\frac{1}{2} \pm \frac{\sqrt{5}}{2} \,\mbox{.}

This means that the equation has two solutions

\displaystyle
 x= e^{(-1 + \sqrt{5})/2}
 \quad \mbox{or} \quad
 x= e^{-(1+\sqrt{5})/2}\,\mbox{.}


Spurious roots

When you solve equations you should also bear in mind that the arguments of logarithms have to be positive and that terms of the type \displaystyle e^{(\ldots)} can only have positive values. In other words we must be careful to make sure that our answer makes sense.

Example 7

Solve the equation \displaystyle \,\ln(4x^2 -2x) = \ln (1-2x).

For the equation to be satisfied the arguments \displaystyle 4x^2-2x and \displaystyle 1-2x must be be positive and equal i.e.

\displaystyle 4x^2 - 2x = 1 - 2x\mbox{.}\,, \displaystyle (*)

We solve the equation \displaystyle (*) by moving all of the terms to one side

\displaystyle 4x^2 - 1= 0

and taking the root. This gives

\displaystyle
 \textstyle x= -\frac{1}{2}
 \quad\mbox{or}\quad
 x = \frac{1}{2} \; \mbox{.}

We now check if both sides of \displaystyle (*) are positive

  • If \displaystyle x= -\tfrac{1}{2} then both are sides are equal to \displaystyle 4x^2 - 2x = 1-2x = 1-2 \cdot \bigl(-\tfrac{1}{2}\bigr) = 1+1 = 2 > 0.
  • If \displaystyle x= \tfrac{1}{2} then both are sides are equal to \displaystyle 4x^2 - 2x = 1-2x = 1-2 \cdot \tfrac{1}{2} = 1-1 = 0 \not > 0.

So the logarithmic equation has only one solution \displaystyle x= -\frac{1}{2}.

Example 8

Solve the equation \displaystyle \,e^{2x} - e^{x} = \frac{1}{2}.

The first term can be written as \displaystyle e^{2x} = (e^x)^2. The whole equation is a quadratic with \displaystyle e^x as the unknown i.e.

\displaystyle (e^x)^2 - e^x = \tfrac{1}{2}\,\mbox{.}

The equation can be a little easier to manage if we write \displaystyle t instead of \displaystyle e^x, so that we try and solve

\displaystyle t^2 -t = \tfrac{1}{2}\,\mbox{.}

Completing the square on the left-hand side gives

\displaystyle \begin{align*}
   \textstyle \bigl(t-\frac{1}{2}\bigr)^2 - \bigl(\frac{1}{2}\bigr)^2
     &= \frac{1}{2}\,\\
   \Rightarrow \bigl(t-\frac{1}{2}\bigr)^2
     &= \frac{3}{4}\,\mbox{.}\\
 \end{align*}

so that

\displaystyle
 t=\frac{1}{2} - \frac{\sqrt{3}}{2}
 \quad\mbox{or}\quad
 t=\frac{1}{2} + \frac{\sqrt{3}}{2} \, \mbox{.}

Since \displaystyle \sqrt3 > 1, \displaystyle \frac{1}{2}-\frac{1}{2}\sqrt3 <0. Therefore it is only \displaystyle t= \frac{1}{2}+\frac{1}{2}\sqrt3 that provides a solution to the original equation because \displaystyle e^x is always positive. Taking logarithms finally gives

\displaystyle
 x = \ln \Bigl(\,\frac{1}{2}+\frac{\sqrt3}{2}\,\Bigr)

as the only solution to the equation.


Exercises

Study advice

The basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that:

You may need to spend some time studying logarithms.

Logarithms are not usually dealt with in detail in high school. Therefore, many college students tend to encounter problems when it comes to calculations with logarithms.