4.2 Trigonometric functions

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (17:58, 10 November 2008) (edit) (undo)
 
(46 intermediate revisions not shown.)
Line 1: Line 1:
__NOTOC__
__NOTOC__
 +
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 +
| style="border-bottom:1px solid #797979" width="5px" |  
 +
{{Selected tab|[[4.2 Trigonometric functions|Theory]]}}
 +
{{Not selected tab|[[4.2 Exercises|Exercises]]}}
 +
| style="border-bottom:1px solid #797979" width="100%"|  
 +
|}
 +
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Contents:'''
-
*De trigonometriska funktionerna cosinus, sinus och tangens.
+
*The trigonometric functions cosine, sine and tangent.
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Learning outcomes:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
After this section, you will have learned:
-
*Känna till begreppen spetsig, trubbig och rät vinkel.
+
*The definition of acute, obtuse and right angles.
-
*Förstå definitionen av cosinus, sinus och tangens i enhetscirkeln.
+
*The definition of cosine, sine and tangent.
-
*Utantill kunna värdena på cosinus, sinus och tangens för standardvinklarna <math>0</math>, <math>\pi/6</math> , <math>\pi/4</math> , <math>\pi/3</math> och <math>\pi/2</math>.
+
*The values of cosine, sine and tangent for the standard angles <math>0</math>, <math>\pi/6</math> , <math>\pi/4</math> , <math>\pi/3</math> and <math>\pi/2</math> by heart.
-
*Bestämma värdena på cosinus, sinus och tangens för argument som kan reduceras till standardvinklarna i någon kvadrant av enhetscirkeln.
+
*To determine the values of cosine, sine and tangent of arguments that can be reduced to a standard angle.
-
*Skissera graferna till cosinus, sinus och tangens.
+
* To sketch graphs of cosine, sine and tangent.
-
*Lösa trigonometriska problem som involverar rätvinkliga trianglar.
+
*To solve trigonometric problems involving right-angled triangles.
}}
}}
-
== Trigonometri i rätvinkliga trianglar ==
+
== Trigonometry of right-angled triangles ==
-
I den rätvinkliga triangeln nedan kallas kvoten mellan den motstående kateten <math>a</math> och den närliggande kateten <math>b</math> för tangens av vinkeln <math>u</math> och betecknas <math>\tan u</math>.
+
In the right-angled triangle below, the ratio between the length <math>a</math> of the side opposite the angle and the length <math>b</math> of the adjacent side is called the tangent of the angle <math>u</math>, and is written as <math>\tan u</math>.
<center>
<center>
Line 25: Line 32:
|-
|-
| valign="center" |
| valign="center" |
-
{{:4.2 - Figur - Rätvinklig triangel med vinkeln u och kateterna a och b}}
+
{{:4.2 - Figure - A right-angled triangle with angle u and legs a and b}}
| width="30px" |
| width="30px" |
| valign="center" |
| valign="center" |
Line 32: Line 39:
</center>
</center>
-
Värdet på kvoten <math>\frac{a}{b}</math> är inte beroende av storleken på triangeln utan bara på vinkeln <math>u</math>. För olika värden på vinkeln kan man få fram motsvarande tangensvärde antingen i en trigonometrisk tabell eller genom att använda en miniräknare (knappen heter ofta tan).
+
The value of the ratio <math>\frac{a}{b}</math> is not dependent on the size of the triangle, but only on the angle <math>u</math>. For different values of the angle, you can get the value of the tangent either from a trigonometric table or by using a calculator (the relevent button is usually named tan).
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
''' Example 1'''
-
Hur hög är flaggstången?
+
How high is the flagpole?
-
<center>{{:4.2 - Figur - Flaggstång}}</center>
+
<center>{{:4.2 - Figure - Flagpole}}</center>
-
Flaggstången och dess skugga bildar tillsammans en rätvinklig triangel där den vertikala kateten är okänd (markerad med <math>x</math> nedan).
+
The flagpole and its shadow form a rectangular triangle where the vertical side is unknown (marked with <math>x</math> below).
-
<center>{{:4.2 - Figur - Flaggstångstriangel}}</center>
+
<center>{{:4.2 - Figure - Flagpole triangle}}</center>
-
Från definitionen av tangens har vi att
+
From the definition of tangent, we have that
-
{{Fristående formel||<math>\tan 40^\circ = \frac{x}{5 \mbox{ m }}</math>}}
+
{{Displayed math||<math>\tan 40^\circ = \frac{x}{5 \mbox{ m }}</math>}}
-
och eftersom <math>\tan 40^\circ \approx 0{,}84</math> så är
+
and since <math>\tan 40^\circ \approx 0\textrm{.}84</math> we get
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
x = 5\,\mbox{m} \cdot \tan 40^\circ \approx 5\,\mbox{m} \cdot 0{,}84
+
x = 5\,\mbox{m} \cdot \tan 40^\circ \approx 5\,\mbox{m} \cdot 0\textrm{.}84
-
= 4{,}2\,\mbox{m}\,\mbox{.}</math>}}
+
= 4\textrm{.}2\,\mbox{m}\,\mbox{.}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
''' Example 2'''
-
Bestäm längden av sidan markerad med <math>x</math> i figuren.
+
Determine the length of the side designated with the <math>x</math> in the figure.
-
<center>{{:4.2 - Figur - Dubbeltriangel}}</center>
+
<center>{{:4.2 - Figure - A double triangle}}</center>
-
Om vi kallar vinkeln längst till vänster för <math>u</math> så finns det två sätt att ställa upp ett uttryck för <math>\tan u</math>.
+
If we call the angle at the far left <math>u</math> there are two ways to construct an expression for <math>\tan u</math>.
-
{|
+
{| align="center"
|-
|-
| width="5%" |
| width="5%" |
| valign="center" align="left" |
| valign="center" align="left" |
-
{{:4.2 - Figur - Dubbeltriangel med den lilla triangeln framhävd}}
+
{{:4.2 - Figure - A double triangle with the small triangle highlighted}}
| width="10%" |
| width="10%" |
| width="85%" valign="center" align="left" |
| width="85%" valign="center" align="left" |
Line 74: Line 81:
|}
|}
-
{|
+
{| align="center"
|-
|-
| width="5%" |
| width="5%" |
| valign="centger" align="left" |
| valign="centger" align="left" |
-
{{:4.2 - Figur - Dubbeltriangel med den stora triangeln framhävd}}
+
{{:4.2 - Figure - A double triangle with the larger triangle highlighted}}
| width="10%" |
| width="10%" |
| width="85%" valign="center" align="left" |
| width="85%" valign="center" align="left" |
Line 84: Line 91:
|}
|}
-
Sätter vi de två uttrycken för <math>\tan u</math> lika fås
+
Equality of the two expressions for <math>\tan u</math> gives
-
{{Fristående formel||<math>\frac{22}{40} = \frac{x}{60}</math>}}
+
{{Displayed math||<math>\frac{22}{40} = \frac{x}{60}</math>}}
-
vilket ger att <math>x=60 \cdot \displaystyle \frac{22}{40} = 33</math>.
+
which leads to <math>x=60 \cdot \displaystyle \frac{22}{40} = 33</math>.
</div>
</div>
-
Det finns två andra kvoter i rätvinkliga trianglar som har speciella namn och det är <math>\cos u = b/c</math> ("cosinus av <math>u</math>") och <math>\sin u = a/c</math> ("sinus av <math>u</math>").
+
There are two other ratios in right-angled triangles that have special names. The first is <math>\cos u = b/c</math> ("cosine of <math>u</math>") and the second is <math>\sin u = a/c</math> (" sine of <math>u</math>").
<center>
<center>
Line 96: Line 103:
|-
|-
| valign="center" |
| valign="center" |
-
{{:4.2 - Figur - Rätvinklig triangel med vinkeln u och sidorna a, b och c}}
+
{{:4.2 - Figure - A right-angled triangle with angle u and sides a, b and c}}
| width="30px" |
| width="30px" |
| valign="center" |
| valign="center" |
Line 105: Line 112:
|}
|}
</center>
</center>
-
 
+
Like the tangent the ratios that define the cosine and sine do not depend on the size of the triangle, but only on the angle <math>u</math>.
-
Precis som för tangens är kvoterna som definierar cosinus och sinus inte beroende av triangelns storlek utan bara på vinkeln <math>u</math>.
+
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Example 3'''
{| width="100%"
{| width="100%"
Line 119: Line 125:
| width="5%" |
| width="5%" |
|align="left" valign="top"|
|align="left" valign="top"|
-
{{:4.2 - Figur - Rätvinklig triangel med vinkeln u och sidor 3, 4 och 5}}
+
{{:4.2 - Figure - A right-angled triangle with angle u and sides 3, 4 and 5}}
| width="10%" |
| width="10%" |
| width="85%" align="left" valign="top" |
| width="85%" align="left" valign="top" |
-
I triangeln till vänster är
+
In the triangle on the left
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\cos u &= \tfrac{4}{5}\\[6pt]
\cos u &= \tfrac{4}{5}\\[6pt]
\sin u &= \tfrac{3}{5}
\sin u &= \tfrac{3}{5}
Line 136: Line 142:
| width="5%" |
| width="5%" |
|align="left" valign="top"|
|align="left" valign="top"|
-
{{:4.2 - Figur - Rätvinklig triangel med vinkeln 38° och sidor x och 5}}
+
{{:4.2 - Figure - A right-angled triangle with angle 38° and sides x and 5}}
| width="10%" |
| width="10%" |
| width="85%" align="left" valign="top" |
| width="85%" align="left" valign="top" |
-
Definitionen av sinus ger att
+
From the definition of sine we have
-
{{Fristående formel||<math>\sin 38^\circ = \frac{x}{5}</math>}}
+
{{Displayed math||<math>\sin 38^\circ = \frac{x}{5}</math>,}}
-
och vet vi att <math>\sin 38^\circ \approx 0{,}616</math> så får vi att
+
and if we know that <math>\sin 38^\circ \approx 0\textrm{.}616</math> then
-
{{Fristående formel||<math>x = 5 \cdot \sin 38^\circ \approx 5 \cdot 0{,}616 \approx 3{,}1\,\mbox{.}</math>}}
+
{{Displayed math||<math>x = 5 \cdot \sin 38^\circ \approx 5 \cdot 0\textrm{.}616 \approx 3\textrm{.}1\,\mbox{.}</math>}}
|-
|-
| height="10px" |
| height="10px" |
Line 152: Line 158:
| width="5%" |
| width="5%" |
|align="left" valign="top"|
|align="left" valign="top"|
-
{{:4.2 - Figur - Rätvinklig triangel med vinkeln 34° och sidor 3 och x}}
+
{{:4.2 - Figure - A right-angled triangle with angle 34° and sides 3 and x}}
| width="10%" |
| width="10%" |
| width="85%" align="left" valign="top" |
| width="85%" align="left" valign="top" |
-
Cosinus är kvoten mellan den närliggande kateten och hypotenusan
+
Cosine is the ratio between the adjacent side and the hypotenuse, so
-
{{Fristående formel||<math>\cos 34^\circ = \frac{3}{x}\,\mbox{.}</math>}}
+
{{Displayed math||<math>\cos 34^\circ = \frac{3}{x}\,\mbox{.}</math>}}
-
Alltså är
+
Thus
-
{{Fristående formel||<math>x=\frac{3}{\cos 34^\circ}\,\mbox{.}</math>}}
+
{{Displayed math||<math>x=\frac{3}{\cos 34^\circ}\,\mbox{.}</math>}}
|}
|}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
''' Example 4'''
-
Bestäm <math>\sin u</math> i triangeln
+
Determine <math>\sin u</math> in the triangle
-
<center>{{:4.2 - Figur - Rätvinklig triangel med vinkel u och sidor ½ och 1}}</center>
+
<center>{{:4.2 - Figure - A right-angled triangle with angle u and sides ½ and 1}}</center>
-
Med hjälp av Pythagoras sats kan kateten till höger bestämmas
+
With the help of the Pythagorean theorem the side on the right can be determined:
<center>
<center>
Line 175: Line 181:
|-
|-
| valign="center" |
| valign="center" |
-
{{:4.2 - Figur - Rätvinklig triangel med vinkel u och sidor ½, x och 1}}
+
{{:4.2 - Figure - A right-angled triangle with angle u and sides ½, x and 1}}
| width="30px" |
| width="30px" |
| align="left" valign="center" |
| align="left" valign="center" |
Line 182: Line 188:
</center>
</center>
-
och därför är <math>\sin u = \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}</math>.
+
and thus <math>\sin u = \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}</math>.
</div>
</div>
-
== Några standardvinklar ==
+
== Some standard angles ==
-
För vissa vinklar 30°, 45° och 60° går det relativt enkelt att räkna ut exakta värden på de trigonometriska funktionerna.
+
For some angles, namely 30°, 45° and 60°, it is relatively easy to calculate the exact values of the trigonometric functions.
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Example 5'''
-
Vi utgår från en kvadrat med sidlängd 1. En diagonal i kvadraten delar de räta vinklarna i motsatta hörn i två lika delar 45°.
+
We start with a square having sides of length 1. A diagonal of the square divides the right angles in opposite corners into two equal parts of 45°.
-
<center>{{:4.2 - Figur - Två enhetskvadrater}}</center>
+
<center>{{:4.2 - Figure - Two unit squares}}</center>
-
Med Pythagoras sats kan vi bestämma diagonalens längd <math>x</math>,
+
Using the Pythagorean theorem, we can determine the length <math>x</math> of the diagonal:
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
x^2 = 1^2 + 1^2
x^2 = 1^2 + 1^2
\quad \Leftrightarrow \quad
\quad \Leftrightarrow \quad
x = \sqrt{1^2 + 1^2} = \sqrt{2}\,\mbox{.}</math>}}
x = \sqrt{1^2 + 1^2} = \sqrt{2}\,\mbox{.}</math>}}
-
I triangeln som har diagonalen som hypotenusa får vi fram värdet på de trigonometriska funktionerna för vinkeln <math>45^\circ</math>.
+
Each triangle has the diagonal as the hypotenuse. Thus we can obtain the value of the trigonometric functions for the angle <math>45^\circ</math>:
Line 212: Line 218:
|-
|-
| valign="center" |
| valign="center" |
-
{{:4.2 - Figur - Enhetskvadrat vars halva är en rätvinklig triangel}}
+
{{:4.2 - Figure - The unit square and half of it as a right-angled triangle}}
| width="30px" |
| width="30px" |
| align="left" valign="center" |
| align="left" valign="center" |
Line 226: Line 232:
<div class="exempel">
<div class="exempel">
-
'''Exempel 6'''
+
''' Example 6'''
-
Betrakta en liksidig triangel där alla sidor har längd 1. Vinklarna i triangeln är alla 60°. Triangeln kan delas upp i två halvor av linjen som delar toppvinkeln mitt itu.
+
Imagine an equilateral triangle where all sides have length 1. The angles of the triangle are all 60°. The triangle can be divided into two halves by a line that divides the angle at the top in equal parts.
-
<center>{{:4.2 - Figur - Två liksidiga trianglar}}</center>
+
<center>{{:4.2 - Figure - Two equilateral triangles}}</center>
-
Pythagoras sats ger att den vertikala sidan av en triangelhalva är <math>x=\sqrt{3}/2</math>. Från en triangelhalva får vi att
+
The Pythagorean theorem allows us to calculate that the length of the vertical side of half-triangle is <math>x=\sqrt{3}/2</math>. Using the definitions we then get that
Line 241: Line 247:
|-
|-
| valign="center" |
| valign="center" |
-
{{:4.2 - Figur - En halv liksidig triangel}}
+
{{:4.2 - Figure - A half of an equilateral triangle}}
| width="20px" |
| width="20px" |
| align="left" valign="center" |
| align="left" valign="center" |
<math>\begin{align*}
<math>\begin{align*}
-
\cos 30^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\,;\\[8pt]
+
\cos 30^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\,\\[8pt]
-
\sin 30^\circ &= \frac{1/2}{1} = \frac{1}{2}\,;\\[8pt]
+
\sin 30^\circ &= \frac{1/2}{1} = \frac{1}{2}\,\\[8pt]
-
\tan 30^\circ &= \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}\,;\\
+
\tan 30^\circ &= \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}\,\\
\end{align*}
\end{align*}
\qquad\quad
\qquad\quad
Line 261: Line 267:
-
== Trigonometriska funktioner för allmänna vinklar ==
+
== Trigonometric functions for general angles ==
-
För vinklar som är mindre än eller större än 90° definieras de trigonometriska funktionerna med hjälp av enhetscirkeln (cirkeln som har medelpunkt i origo och radie 1).
+
For angles less than or greater than 90° the trigonometric functions are defined using the unit circle (that is the circle that has its centre at the origin and has radius 1).
<div class="regel">
<div class="regel">
Line 269: Line 275:
|-
|-
| width="90%" valign="center"|
| width="90%" valign="center"|
-
De trigonometriska funktionerna <math>\cos u</math> och <math>\sin u</math> är ''x''- respektive ''y''-koordinaterna för skärningspunkten mellan enhetscirkeln och det radiella linjesegmentet som bildar vinkeln <math>u</math> med den positiva ''x''-axeln.
+
The trigonometric functions <math>\cos u</math> and <math>\sin u</math> are the ''x''- and ''y''- coordinates of the point on the unit circle reached by turning through the angle <math>u</math>, as shown in the diagram on the right.
| width="10%" |
| width="10%" |
| align="right" valign="center" |
| align="right" valign="center" |
-
{{:4.2 - Figur - Enhetscirkeln med vinkeln u och punkten (cos u, sin u)}}
+
{{:4.2 - Figure - The unit circle with angle u and the point (cos u, sin u)}}
|}
|}
</div>
</div>
-
Tangensfunktionen definieras som
+
The tangent function is then defined as
-
{{Fristående formel||<math>\tan u = \displaystyle\frac{\sin u}{\cos u}</math>}}
+
{{Displayed math||<math>\tan u = \displaystyle\frac{\sin u}{\cos u}</math>}}
-
och tangensvärdet kan tolkas som riktningskoefficienten för det radiella linjesegmentet.
+
and the value of the tangent can be interpreted as the slope for the radial line.
<div class="exempel">
<div class="exempel">
-
'''Exempel 7'''
+
''' Example 7'''
-
Från figurerna nedan avläser vi värdena på cosinus och sinus.
+
From the figures below, we obtain the values of cosine and sine.
{| width="100%"
{| width="100%"
Line 295: Line 301:
</ol>
</ol>
|align="right" valign="center"|
|align="right" valign="center"|
-
{{:4.2 - Figur - Enhetscirkeln med vinkeln 104° och punkten (-0,24; 0,97)}}
+
{{:4.2 - Figure - The unit circle with the angle 104° and the point (-0.24,0.97)}}
| width="10%" |
| width="10%" |
| width="90%" align="left" valign="center" |
| width="90%" align="left" valign="center" |
<math>\begin{align*}
<math>\begin{align*}
-
\cos 104^\circ &\approx -0{,}24\\[8pt]
+
\cos 104^\circ &\approx -0\mbox{.}24\\[8pt]
-
\sin 104^\circ &\approx 0{,}97\\[8pt]
+
\sin 104^\circ &\approx 0\mbox{.}97\\[8pt]
-
\tan 104^\circ &\approx \dfrac{0{,}97}{-0{,}24} \approx -4{,}0\\
+
\tan 104^\circ &\approx \dfrac{0\mbox{.}97}{-0\mbox{.}24} \approx -4\mbox{.}0\\
\end{align*}</math>
\end{align*}</math>
|-
|-
Line 309: Line 315:
</ol>
</ol>
|align="right" valign="center"|
|align="right" valign="center"|
-
{{:4.2 - Figur - Enhetscirkeln med vinkeln 201° och punkten (-0,93; -0,36)}}
+
{{:4.2 - Figure - The unit circle with angle 201° and the point (-0.93,-0.36)}}
| width="10%" |
| width="10%" |
| width="90%" align="left" valign="center" |
| width="90%" align="left" valign="center" |
<math>\begin{align*}
<math>\begin{align*}
-
\cos 201^\circ &\approx -0{,}93\\[8pt]
+
\cos 201^\circ &\approx -0\mbox{.}93\\[8pt]
-
\sin 201^\circ &\approx -0{,}36\\[8pt]
+
\sin 201^\circ &\approx -0\mbox{.}36\\[8pt]
-
\tan 201^\circ &\approx \dfrac{-0{,}36}{-0{,}93} \approx 0{,}4\\
+
\tan 201^\circ &\approx \dfrac{-0\mbox{.}36}{-0\mbox{.}93} \approx 0\mbox{.}4\\
\end{align*}</math>
\end{align*}</math>
|}
|}
Line 321: Line 327:
<div class="exempel">
<div class="exempel">
-
'''Exempel 8'''
+
''' Example 8'''
-
Vilket tecken har
+
Which sign do the following have?
{| width="100%"
{| width="100%"
|-
|-
Line 331: Line 337:
<br>
<br>
<br>
<br>
-
Eftersom vinkeln <math>209^\circ</math> kan skrivas som <math>209^\circ = 180^\circ + 29^\circ</math> så svarar vinkeln mot en punkt på enhetscirkeln som ligger i den tredje kvadranten. Den punkten har en negativ ''x''-koordinat, vilket betyder att <math>\cos 209^\circ</math> är negativ.</li>
+
Since the angle <math>209^\circ</math> can be written as <math>209^\circ = 180^\circ + 29^\circ</math> the angle corresponds to a point on the unit circle which lies in the third quadrant. The point has a negative ''x''-coordinate, which means that <math>\cos 209^\circ</math> is negative .</li>
</ol>
</ol>
| width="5%" |
| width="5%" |
| align="right" |
| align="right" |
-
{{:4.2 - Figur - Enhetscirkeln med vinkeln 209° och linjen x = cos 209°}}
+
{{:4.2 - Figure - The unit circle with angle 209° and the line x = cos 209°}}
|-
|-
| width="95%" |
| width="95%" |
Line 342: Line 348:
<br>
<br>
<br>
<br>
-
Vinkeln <math>133^\circ</math> är lika med <math>90^\circ + 43^\circ</math> och ger en punkt på enhetscirkeln som ligger i den andra kvadranten. I den kvadranten har punkter positiv ''y''-koordinat och därför är <math>\sin 133^\circ</math> positiv.</li>
+
The angle <math>133^\circ</math> is equal to <math>90^\circ + 43^\circ</math> and gives a point on the unit circle which lies in the second quadrant. The quadrant has points with positive ''y''-coordinate, and therefore <math>\sin 133^\circ</math> is positive.</li>
</ol>
</ol>
| width="5%" |
| width="5%" |
| align="right" |
| align="right" |
-
{{:4.2 - Figur - Enhetscirkeln med vinkeln 133° och linjen y = sin 133°}}
+
{{:4.2 - Figure - The unit circle with the angle 133° and the line y = sin 133°}}
|-
|-
| width="95%" |
| width="95%" |
Line 353: Line 359:
<br>
<br>
<br>
<br>
-
Ritas vinkeln <math>-40^\circ</math> in i enhetscirkeln fås en vinkellinje som har en negativ riktningskoefficient, dvs. <math>\tan (-40^\circ)</math> är negativ.</li>
+
By drawing angle <math>-40^\circ</math> in the unit circle one obtains a radial line which has a negative slope, so that <math>\tan (-40^\circ)</math> is negative. </li>
</ol>
</ol>
| width="5%" |
| width="5%" |
| align="right" |
| align="right" |
-
{{:4.2 - Figur - Enhetscirkeln med vinkeln -40° och linjen med riktningskoefficient tan -40°}}
+
{{:4.2 - Figure - The unit circle with the angle -40° and the line with slope tan -40°}}
|}
|}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 9'''
+
''' Example 9'''
-
Bestäm <math>\,\sin\frac{2\pi}{3}</math>.
+
Calculate <math>\,\sin\frac{2\pi}{3}</math>.
<br>
<br>
<br>
<br>
-
Omskrivningen
+
Note that
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\frac{2\pi}{3} = \frac{4\pi}{6}
\frac{2\pi}{3} = \frac{4\pi}{6}
= \frac{3\pi+ \pi}{6}
= \frac{3\pi+ \pi}{6}
-
= \frac{\pi}{2} + \frac{\pi}{6}</math>}}
+
= \frac{\pi}{2} + \frac{\pi}{6}</math>.}}
-
visar att vinkeln <math>2\pi/3</math> hamnar i enhetscirkelns andra kvadrant och bildar vinkeln <math>\pi/6</math> med den positiva ''y''-axeln. Om vi ritar in en hjälptriangel som i figuren nedan till höger så ser vi att <math>2\pi/3</math>-punkten på enhetscirkeln har en ''y''-koordinat som är lika med den närliggande kateten <math>\cos \frac{\pi}{6} = \sqrt{3}/2</math>. Alltså är
+
This shows that the point on the unit circle corresponding to the angle <math>2\pi/3</math> is in the the second quadrant and makes the angle <math>\pi/6</math> with the positive ''y''-axis. If we draw an extra triangle as in the figure below on the right, we see that the <math>2\pi/3</math>- point on the unit circle has a ''y''-coordinate which is equal to the adjacent side <math>\cos \frac{\pi}{6} = \sqrt{3}/2</math>. So we have that
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}\,\mbox{.}</math>}}
\sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}\,\mbox{.}</math>}}
-
<center>{{:4.2 - Figur - Två enhetscirklar med vinkeln 2π/3 (vinkeln π/6 mot y-axeln)}}</center>
+
<center>{{:4.2 - Figure - Two unit circles with angle 2π/3 (angle π/6 with the y-axis)}}</center>
</div>
</div>
-
== De trigonometriska funktionernas grafer ==
+
== Graphs of the trigonometric functions ==
-
I förra avsnittet använde vi enhetscirkeln för att definiera cosinus och sinus för godtyckliga vinklar och vi kommer använda enhetscirkeln ofta framöver för att t.ex. härleda trigonometriska samband och lösa trigonometriska ekvationer. Det finns dock vissa egenskaper hos de trigonometriska funktionerna som bättre illustreras genom att rita upp deras funktionsgrafer.
+
In the last section we used a unit circle to define the cosine and sine of arbitrary angles, and we will often use the unit circle in the future, for example, to derive trigonometric relationships and solve trigonometric equations. However, there are certain characteristics of the trigonometric functions that are better illustrated by drawing their graphs.
-
<center>{{:4.2 - Figur - Sinuskurva}}</center>
+
<center>{{:4.2 - Figure - A sine curve}}</center>
-
<center><small>Grafen till sinusfunktionen</small></center>
+
<center><small>The graph of the sine function </small></center>
-
<center>{{:4.2 - Figur - Cosinuskurva}}</center>
+
<center>{{:4.2 - Figure - A cosine curve}}</center>
-
<center><small>Grafen till cosinusfunktionen</small></center>
+
<center><small>The graph of the cosine function </small></center>
-
<center>{{:4.2 - Figur - Tangenskurva}}</center>
+
<center>{{:4.2 - Figure - A tangent curve}}</center>
-
<center><small>Grafen till tangensfunktionen</small></center>
+
<center><small>The graph of the tangent function </small></center>
-
I graferna kan vi observera flera saker kanske tydligare än i enhetscirkeln. Några exempel är
+
In these graphs, we might observe several things more clearly than in the unit circle. Some examples are:
-
*Kurvorna för cosinus och sinus upprepar sig efter en vinkeländring på <math>2\pi</math>, dvs. det gäller att <math>\cos (x+2\pi) = \cos x</math> och <math>\sin (x+2\pi) = \sin x</math>. I enhetscirkeln motsvarar <math>2\pi</math> ett varv och efter ett helt varv återkommer vinklar till samma läge på enhetscirkeln och har därför samma koordinater.
+
* The curves for cosine and sine repeat themselves after a change in angle of <math>2\pi</math>, that is <math>\cos (x+2\pi) = \cos x</math> and <math>\sin (x+2\pi) = \sin x</math>. To see why this is true, note that on the unit circle <math>2\pi</math> corresponds to a complete revolution, and after a complete revolution we return to the same point on the circle.
-
*Kurvan för tangens upprepar sig redan efter en vinkeländring på <math>\pi</math>, dvs. <math>\tan (x+\pi) = \tan x</math>. Två vinklar som skiljer sig åt med <math>\pi</math> ligger på samma linje genom origo i enhetscirkeln och deras vinkellinjer har därför samma riktningskoefficient.
+
*The curve for the tangent repeats itself after a change in angle of <math>\pi</math>, that is <math>\tan (x+\pi) = \tan x</math>. Two angles which differ by <math>\pi</math> share the same line through the origin of the unit circle and thus their radial lines have the same slope.
-
*Förutom en fasförskjutning på <math>\pi/2</math> är kurvorna för cosinus och sinus identiska, dvs. <math>\cos x = \sin (x+ \pi/2)</math>; mer om detta i nästa kapitel.
+
*Except for a phase shift of <math>\pi/2</math> the curves for cosine and sine are identical, that is <math>\cos x = \sin (x+ \pi/2)</math>; more about this in the next section.
-
Graferna kan också vara viktiga när man undersöker trigonometriska ekvationer. Med en enkel skiss kan man ofta få en uppfattning om hur många lösningar en ekvation har, och var lösningarna finns.
+
The curves can also be important when examining trigonometric equations. With a simple sketch, you can often get an idea of how many solutions an equation has, and where the solutions lie.
<div class="exempel">
<div class="exempel">
-
'''Exempel 10'''
+
''' Example 10'''
-
Hur många lösningar har ekvationen <math>\cos x = x^2</math>? (där <math>x</math> mäts i radianer)
+
How many solutions has the equation <math>\cos x = x^2</math> ( where <math>x</math> is measured in radians)?
<br>
<br>
<br>
<br>
-
Genom att rita upp graferna <math>y=\cos x</math> och <math>y=x^2</math> ser vi att kurvorna skär varandra i två punkter. Det finns alltså två ''x''-värden för vilka motsvarande ''y''-värden är lika. Med andra ord har ekvationen två lösningar.
+
By drawing the graphs <math>y=\cos x</math> and <math>y=x^2</math> we see that the curves intersect in two points. So there are two ''x''-values for which the corresponding ''y''-values are equal. In other words, the equation has two solutions.
-
<center>{{:4.2 - Figur - Kurvorna y = cos x och y = x²}}</center>
+
<center>{{:4.2 - Figure - The curves y = cos x and y = x²}}</center>
</div>
</div>
-
[[4.2 Övningar|Övningar]]
+
[[4.2 Exercises|Exercises]]
-
 
+
-
<div class="inforuta">
+
-
'''Råd för inläsning'''
+
-
 
+
-
'''Grund- och slutprov'''
+
-
Efter att du har läst texten och arbetat med övningarna ska du göra grund- och slutprovet för att bli godkänd på detta avsnitt. Du hittar länken till proven i din student lounge.
+
<div class="inforuta" style="width:580px;">
 +
'''Study advice'''
 +
'''Basic and final tests'''
-
'''Tänk på att:'''
+
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
-
Har du läst trigonometri, så ska du inte vara rädd för att använda den i geometriska problem. Det ger ofta en enklare lösning.
 
-
Du kan behöva lägga ner mycket tid på att förstå hur man använder enhetscirkeln för att definiera de trigonometriska funktionerna.
+
'''Keep in mind that...'''
-
Ta för vana att räkna med exakta trigonometriska värden. Det ger en bra träning på bråkräkning och så småningom i räkning med algebraiska rationella uttryck.
+
If you have studied trigonometry, then you should not be afraid to use it in geometric problems. It often produces a simpler solution.
 +
You may need to spend a lot of time understanding how to use a unit circle to define the trigonometric functions.
-
'''Lästips'''
+
You should get into the habit of calculating with precise trigonometric values. It is good training in calculating fractions and will eventually help you handle algebraic rational expressions.
-
för dig som vill fördjupa dig ytterligare eller behöver en längre förklaring vill vi tipsa om:
+
'''Reviews'''
-
[http://dooku.miun.se/per.edstrom/interaktiv_matematik/trigonometri/cos_even.html Läs mer om Trigonometri i Per Edströms "Interaktiv Matematik"]
+
For those of you who want to deepen your understanding or need more detailed explanations consider the following references:
-
[http://en.wikipedia.org/wiki/Trigonometric_function Läs mer om trigonometri på engelska Wikipedia]
+
[http://en.wikipedia.org/wiki/Trigonometric_function Learn more about trigonometry from Wikipedia]
-
[http://en.wikipedia.org/wiki/Unit_circle Läs mer om enhetscirkeln på engelska Wikipedia]
+
[http://en.wikipedia.org/wiki/Unit_circle Learn more about the unit circle from Wikipedia]
-
'''Länktips'''
+
'''Useful web sites'''
-
[http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf Experimentera med sinus och cosinus i enhetscirkeln]
+
[http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf Experiment with the sine and cosine functions]
-
[http://www.math.psu.edu/dlittle/java/geometry/euclidean/toolbox.html Experimentera med Euklidisk geometri]
+
[http://www.math.psu.edu/dlittle/java/geometry/euclidean/toolbox.html Experiment with Euclidean geometry]
</div>
</div>

Current revision

       Theory          Exercises      

Contents:

  • The trigonometric functions cosine, sine and tangent.

Learning outcomes:

After this section, you will have learned:

  • The definition of acute, obtuse and right angles.
  • The definition of cosine, sine and tangent.
  • The values of cosine, sine and tangent for the standard angles \displaystyle 0, \displaystyle \pi/6 , \displaystyle \pi/4 , \displaystyle \pi/3 and \displaystyle \pi/2 by heart.
  • To determine the values of cosine, sine and tangent of arguments that can be reduced to a standard angle.
  • To sketch graphs of cosine, sine and tangent.
  • To solve trigonometric problems involving right-angled triangles.

Trigonometry of right-angled triangles

In the right-angled triangle below, the ratio between the length \displaystyle a of the side opposite the angle and the length \displaystyle b of the adjacent side is called the tangent of the angle \displaystyle u, and is written as \displaystyle \tan u.

[Image]

\displaystyle \tan u = \displaystyle \frac{a}{b}

The value of the ratio \displaystyle \frac{a}{b} is not dependent on the size of the triangle, but only on the angle \displaystyle u. For different values of the angle, you can get the value of the tangent either from a trigonometric table or by using a calculator (the relevent button is usually named tan).

Example 1

How high is the flagpole?

[Image]

The flagpole and its shadow form a rectangular triangle where the vertical side is unknown (marked with \displaystyle x below).

[Image]

From the definition of tangent, we have that

\displaystyle \tan 40^\circ = \frac{x}{5 \mbox{ m }}

and since \displaystyle \tan 40^\circ \approx 0\textrm{.}84 we get

\displaystyle
 x = 5\,\mbox{m} \cdot \tan 40^\circ \approx 5\,\mbox{m} \cdot 0\textrm{.}84
   = 4\textrm{.}2\,\mbox{m}\,\mbox{.}

Example 2

Determine the length of the side designated with the \displaystyle x in the figure.

[Image]

If we call the angle at the far left \displaystyle u there are two ways to construct an expression for \displaystyle \tan u.

[Image]

\displaystyle \tan u = \displaystyle \frac{22}{40}

[Image]

\displaystyle \tan u = \dfrac{x}{60}

Equality of the two expressions for \displaystyle \tan u gives

\displaystyle \frac{22}{40} = \frac{x}{60}

which leads to \displaystyle x=60 \cdot \displaystyle \frac{22}{40} = 33.

There are two other ratios in right-angled triangles that have special names. The first is \displaystyle \cos u = b/c ("cosine of \displaystyle u") and the second is \displaystyle \sin u = a/c (" sine of \displaystyle u").

[Image]

\displaystyle \begin{align*} \cos u &= \frac{b}{c}\\[8pt] \sin u &= \frac{a}{c} \end{align*}

Like the tangent the ratios that define the cosine and sine do not depend on the size of the triangle, but only on the angle \displaystyle u.

Example 3

[Image]

In the triangle on the left

\displaystyle \begin{align*}

\cos u &= \tfrac{4}{5}\\[6pt] \sin u &= \tfrac{3}{5} \end{align*}

[Image]

From the definition of sine we have

\displaystyle \sin 38^\circ = \frac{x}{5},

and if we know that \displaystyle \sin 38^\circ \approx 0\textrm{.}616 then

\displaystyle x = 5 \cdot \sin 38^\circ \approx 5 \cdot 0\textrm{.}616 \approx 3\textrm{.}1\,\mbox{.}

[Image]

Cosine is the ratio between the adjacent side and the hypotenuse, so

\displaystyle \cos 34^\circ = \frac{3}{x}\,\mbox{.}

Thus

\displaystyle x=\frac{3}{\cos 34^\circ}\,\mbox{.}

Example 4

Determine \displaystyle \sin u in the triangle

[Image]

With the help of the Pythagorean theorem the side on the right can be determined:

[Image]

\displaystyle 1^2= \bigl( \tfrac{1}{2} \bigr)^2 + x^2 \quad\Leftrightarrow\quad x = \frac{\sqrt{3}}{2}

and thus \displaystyle \sin u = \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}.


Some standard angles

For some angles, namely 30°, 45° and 60°, it is relatively easy to calculate the exact values of the trigonometric functions.

Example 5

We start with a square having sides of length 1. A diagonal of the square divides the right angles in opposite corners into two equal parts of 45°.


[Image]


Using the Pythagorean theorem, we can determine the length \displaystyle x of the diagonal:

\displaystyle
 x^2 = 1^2 + 1^2
 \quad \Leftrightarrow \quad
 x = \sqrt{1^2 + 1^2} = \sqrt{2}\,\mbox{.}

Each triangle has the diagonal as the hypotenuse. Thus we can obtain the value of the trigonometric functions for the angle \displaystyle 45^\circ:


[Image]

\displaystyle \begin{align*} \cos 45^\circ &= \frac{1}{\sqrt{2}}\\[8pt] \sin 45^\circ &= \frac{1}{\sqrt{2}}\\[8pt] \tan 45^\circ &= \frac{1}{1}= 1\\ \end{align*}

Example 6

Imagine an equilateral triangle where all sides have length 1. The angles of the triangle are all 60°. The triangle can be divided into two halves by a line that divides the angle at the top in equal parts.


[Image]


The Pythagorean theorem allows us to calculate that the length of the vertical side of half-triangle is \displaystyle x=\sqrt{3}/2. Using the definitions we then get that


[Image]

\displaystyle \begin{align*} \cos 30^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\,\\[8pt] \sin 30^\circ &= \frac{1/2}{1} = \frac{1}{2}\,\\[8pt] \tan 30^\circ &= \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}\,\\ \end{align*} \qquad\quad \begin{align*} \cos 60^\circ &= \frac{1/2}{1} = \frac{1}{2}\\[8pt] \sin 60^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\\[8pt] \tan 60^\circ &= \frac{\sqrt{3}/2}{1/2}=\sqrt{3}\\ \end{align*}


Trigonometric functions for general angles

For angles less than 0° or greater than 90° the trigonometric functions are defined using the unit circle (that is the circle that has its centre at the origin and has radius 1).

The trigonometric functions \displaystyle \cos u and \displaystyle \sin u are the x- and y- coordinates of the point on the unit circle reached by turning through the angle \displaystyle u, as shown in the diagram on the right.

[Image]

The tangent function is then defined as

\displaystyle \tan u = \displaystyle\frac{\sin u}{\cos u}

and the value of the tangent can be interpreted as the slope for the radial line.


Example 7

From the figures below, we obtain the values of cosine and sine.

[Image]

\displaystyle \begin{align*} \cos 104^\circ &\approx -0\mbox{.}24\\[8pt] \sin 104^\circ &\approx 0\mbox{.}97\\[8pt] \tan 104^\circ &\approx \dfrac{0\mbox{.}97}{-0\mbox{.}24} \approx -4\mbox{.}0\\ \end{align*}

[Image]

\displaystyle \begin{align*} \cos 201^\circ &\approx -0\mbox{.}93\\[8pt] \sin 201^\circ &\approx -0\mbox{.}36\\[8pt] \tan 201^\circ &\approx \dfrac{-0\mbox{.}36}{-0\mbox{.}93} \approx 0\mbox{.}4\\ \end{align*}

Example 8

Which sign do the following have?

  1. \displaystyle \cos 209^\circ

    Since the angle \displaystyle 209^\circ can be written as \displaystyle 209^\circ = 180^\circ + 29^\circ the angle corresponds to a point on the unit circle which lies in the third quadrant. The point has a negative x-coordinate, which means that \displaystyle \cos 209^\circ is negative .

[Image]

  1. \displaystyle \sin 133^\circ

    The angle \displaystyle 133^\circ is equal to \displaystyle 90^\circ + 43^\circ and gives a point on the unit circle which lies in the second quadrant. The quadrant has points with positive y-coordinate, and therefore \displaystyle \sin 133^\circ is positive.

[Image]

  1. \displaystyle \tan (-40^\circ)

    By drawing angle \displaystyle -40^\circ in the unit circle one obtains a radial line which has a negative slope, so that \displaystyle \tan (-40^\circ) is negative.

[Image]

Example 9

Calculate \displaystyle \,\sin\frac{2\pi}{3}.

Note that

\displaystyle
 \frac{2\pi}{3} = \frac{4\pi}{6}
                = \frac{3\pi+ \pi}{6}
                = \frac{\pi}{2} + \frac{\pi}{6}.

This shows that the point on the unit circle corresponding to the angle \displaystyle 2\pi/3 is in the the second quadrant and makes the angle \displaystyle \pi/6 with the positive y-axis. If we draw an extra triangle as in the figure below on the right, we see that the \displaystyle 2\pi/3- point on the unit circle has a y-coordinate which is equal to the adjacent side \displaystyle \cos \frac{\pi}{6} = \sqrt{3}/2. So we have that

\displaystyle
 \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}\,\mbox{.}

[Image]


Graphs of the trigonometric functions

In the last section we used a unit circle to define the cosine and sine of arbitrary angles, and we will often use the unit circle in the future, for example, to derive trigonometric relationships and solve trigonometric equations. However, there are certain characteristics of the trigonometric functions that are better illustrated by drawing their graphs.


[Image]

The graph of the sine function

[Image]

The graph of the cosine function

[Image]

The graph of the tangent function


In these graphs, we might observe several things more clearly than in the unit circle. Some examples are:

  • The curves for cosine and sine repeat themselves after a change in angle of \displaystyle 2\pi, that is \displaystyle \cos (x+2\pi) = \cos x and \displaystyle \sin (x+2\pi) = \sin x. To see why this is true, note that on the unit circle \displaystyle 2\pi corresponds to a complete revolution, and after a complete revolution we return to the same point on the circle.
  • The curve for the tangent repeats itself after a change in angle of \displaystyle \pi, that is \displaystyle \tan (x+\pi) = \tan x. Two angles which differ by \displaystyle \pi share the same line through the origin of the unit circle and thus their radial lines have the same slope.
  • Except for a phase shift of \displaystyle \pi/2 the curves for cosine and sine are identical, that is \displaystyle \cos x = \sin (x+ \pi/2); more about this in the next section.


The curves can also be important when examining trigonometric equations. With a simple sketch, you can often get an idea of how many solutions an equation has, and where the solutions lie.

Example 10

How many solutions has the equation \displaystyle \cos x = x^2 ( where \displaystyle x is measured in radians)?

By drawing the graphs \displaystyle y=\cos x and \displaystyle y=x^2 we see that the curves intersect in two points. So there are two x-values for which the corresponding y-values are equal. In other words, the equation has two solutions.

[Image]


Exercises

Study advice

Basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that...

If you have studied trigonometry, then you should not be afraid to use it in geometric problems. It often produces a simpler solution.

You may need to spend a lot of time understanding how to use a unit circle to define the trigonometric functions.

You should get into the habit of calculating with precise trigonometric values. It is good training in calculating fractions and will eventually help you handle algebraic rational expressions.

Reviews

For those of you who want to deepen your understanding or need more detailed explanations consider the following references:

Learn more about trigonometry from Wikipedia

Learn more about the unit circle from Wikipedia


Useful web sites

Experiment with the sine and cosine functions

Experiment with Euclidean geometry