4.3 Trigonometric relations

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Regerate images and tabs)
Current revision (20:17, 10 November 2008) (edit) (undo)
 
(24 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Vald flik|[[4.3 Trigonometriska samband|Teori]]}}
+
{{Selected tab|[[4.3 Trigonometric relations|Theory]]}}
-
{{Ej vald flik|[[4.3 Övningar|Övningar]]}}
+
{{Not selected tab|[[4.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Contents:'''
-
*Trigonometriska ettan
+
* The Pythagorean identity
-
*Formeln för dubbla och halva vinkeln
+
* The double-angle and half-angle formulas
-
*Additions- och subtraktionsformlerna
+
* Addition and subtraction formulas
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Learning outcome:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
After this section, you will have learned how to:
-
*Härleda trigonometriska samband från symmetrier i enhetscirkeln.
+
*Derive trigonometric relationships from symmetries in the unit circle.
-
*Förenkla trigonometriska uttryck med hjälp av de trigonometriska sambanden.
+
* Simplify trigonometric expressions with the help of trigonometric formulas.
}}
}}
-
== Inledning ==
+
== Introduction ==
-
Det finns en mängd trigonometriska samband, med vilka man kan översätta mellan sinus-, cosinus- och tangensvärden för en vinkel eller multiplar av en vinkel. Dessa brukar också kallas trigonometriska identiteter, eftersom de endast är olika sätt att beskriva ett och samma uttryck med hjälp av olika trigonometriska funktioner. Här kommer vi att beskriva några av dessa trigonometriska samband. Det finns många fler än vi kan behandla här. De flesta kan härledas utifrån den s k '''trigonometriska ettan''' och additionsformlerna (se nedan), vilka är viktiga att kunna utantill.
+
There are a variety of trigonometric formulas which relate the sine, cosine or tangent for an angle or multiples of an angle. They are usually known as the trigonometric identities. Here we will give some of these trigonometric relationships, and show how to derive them. There are many more than we can deal with in this course, but most can be derived from the so-called Pythagorean identity and the addition and subtraction formulas (see below), which are important to know by heart.
-
== Trigonometriska ettan ==
+
== The Pythagorean identity ==
{| width="100%"
{| width="100%"
| width="100%" valign="center" |
| width="100%" valign="center" |
-
Detta samband är det mest grundläggande, men är i själva verket ingenting annat än Pythagoras sats, tillämpad i enhetscirkeln. Den rätvinkliga triangeln till höger visar att
+
This identity is the most basic, but is in fact nothing more than Pythagorean theorem, applied to the unit circle. The right-angled triangle on the right shows that
-
{{Fristående formel||<math>(\sin v)^2 + (\cos v)^2 = 1\,\mbox{,}</math>}}
+
{{Displayed math||<math>(\sin v)^2 + (\cos v)^2 = 1\,\mbox{,}</math>}}
-
vilket brukar skrivas <math>\sin^2\!v + \cos^2\!v = 1</math>.
+
which is usually written as <math>\sin^2\!v + \cos^2\!v = 1</math>.
| valign="center" |
| valign="center" |
-
{{:4.3 - Figur - Trigonometriska ettan}}
+
{{:4.3 - Figure - Pythagorean identity}}
|}
|}
-
== Symmetrier ==
+
== Symmetries ==
-
Med hjälp av enhetscirkeln och spegling kan man tack vare de trigonometriska funktionernas symmetrier hitta en stor mängd samband mellan cosinus och sinus.
+
With the help of the unit circle and by exploiting the symmetries we obtain a large number of relationships between the cosine and sine functions:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\begin{align*}
\begin{align*}
\cos (-v) &= \cos v\vphantom{\Bigl(}\\
\cos (-v) &= \cos v\vphantom{\Bigl(}\\
Line 63: Line 63:
</div>
</div>
-
Istället för att försöka lära sig alla dessa samband utantill kan det vara bättre att lära sig härleda dem i enhetscirkeln.
+
Instead of trying to learn all of these relationships by heart, it is better to learn how to derive them from the unit circle.
-
'''Spegling i ''x''-axeln'''
+
'''Reflection in the ''x''-axis'''
{|
{|
|-
|-
| width=50% valign=top align="center" |
| width=50% valign=top align="center" |
-
{{:4.3 - Figur - Spegling i x-axeln}}
+
{{:4.3 - Figure - Reflection in the x-axis}}
| width=45% valign=top |
| width=45% valign=top |
<br>
<br>
-
När en vinkel <math>v</math> speglas i ''x''-axeln blir den <math>-v</math>.
+
When an angle <math>v</math> is reflected in the ''x''-axis it becomes <math>-v</math>.
-
Speglingen påverkar inte ''x''-koordinaten medan ''y''-koordinaten byter tecken
+
Reflection does not affect the ''x''- coordinate while the ''y''-coordinate changes sign, so that
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\cos(-v) &= \cos v\,\mbox{,}\\
\cos(-v) &= \cos v\,\mbox{,}\\
\sin (-v) &= - \sin v\,\mbox{.}\\
\sin (-v) &= - \sin v\,\mbox{.}\\
Line 86: Line 86:
-
'''Spegling i ''y''-axeln'''
+
'''Reflection in the ''y''-axis'''
{|
{|
|-
|-
| width=50% valign=top align="center" |
| width=50% valign=top align="center" |
-
{{:4.3 - Figur - Spegling i y-axeln}}
+
{{:4.3 - Figure - Reflection in the y-axis}}
| width=45% valign=top |
| width=45% valign=top |
<br>
<br>
-
Vid spegling i ''y''-axeln ändras vinkeln <math>v</math> till <math>\pi-v</math> (spegelbilden bildar vinkeln <math>v</math> mot den negativa ''x''-axeln).
+
Reflection in the ''y''-axis changes the angle from <math>v</math> to <math>\pi-v</math> (the reflection makes an angle <math>v</math> with the negative ''x''-axis).
-
Speglingen påverkar inte ''y''-koordinaten medan ''x''-koordinaten byter tecken
+
This reflection does not affect the ''y''-coordinate, while the ''x''-coordinate changes sign, so we see that
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\cos(\pi-v) &= -\cos v\,\mbox{,}\\
\cos(\pi-v) &= -\cos v\,\mbox{,}\\
\sin (\pi-v) &= \sin v\,\mbox{.}\\
\sin (\pi-v) &= \sin v\,\mbox{.}\\
Line 106: Line 106:
-
'''Spegling i linjen ''y = x'' '''
+
''' Reflection in the line ''y = x'' '''
{|
{|
|-
|-
| width=50% valign=top align="center" |
| width=50% valign=top align="center" |
-
{{:4.3 - Figur - Spegling i linjen y = x}}
+
{{:4.3 - Figure - Reflection in the line y = x}}
| width=45% valign=top |
| width=45% valign=top |
<br>
<br>
-
Vinkeln <math>v</math> ändras till vinkeln <math>\pi/2 - v</math> (spegelbilden bildar vinkeln <math>v</math> mot den positiva ''y''-axeln).
+
The angle <math>v</math> is changed to <math>\pi/2 - v</math> (the reflected line makes an angle <math>v</math> with the positive ''y''-axis).
-
Speglingen gör att ''x''- och ''y''-koordinaterna byter plats
+
This reflection swaps the ''x''- and ''y''-coordinates, so that
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\cos \Bigl(\frac{\pi}{2} - v \Bigr) &= \sin v\,\mbox{.}\\
\cos \Bigl(\frac{\pi}{2} - v \Bigr) &= \sin v\,\mbox{.}\\
\sin \Bigl(\frac{\pi}{2} - v \Bigr) &= \cos v\,\mbox{.}\\
\sin \Bigl(\frac{\pi}{2} - v \Bigr) &= \cos v\,\mbox{.}\\
Line 126: Line 126:
-
'''Vridning med vinkeln <math>\mathbf{\pi/2}</math>'''
+
''' Rotation by an angle of <math>\mathbf{\pi/2}</math>'''
{|
{|
|-
|-
| width=50% valign=top align="center" |
| width=50% valign=top align="center" |
-
{{:4.3 - Figur - Vridning med vinkeln π/2}}
+
{{:4.3 - Figure - Rotation by an angle π/2}}
| width=40% valign=top |
| width=40% valign=top |
<br>
<br>
-
En vridning <math>\pi/2</math> av vinkeln <math>v</math> betyder att vinkeln blir <math>v+ \pi/2</math>.
+
A rotation <math>\pi/2</math> of the angle <math>v</math> means that the angle becomes <math>v+\pi/2</math>.
-
Vridningen gör att ''x''-koordinaten blir ny ''y''-koordinat och ''y''-koordinaten blir ny ''x''-koordinat fast med omvänt tecken
+
The rotation turns the ''x''-coordinate into the new ''y''-coordinate and the ''y''-coordinate turns into the new ''x''-coordinate with the opposite sign, so that
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\cos \Bigl(v+\frac{\pi}{2}\Bigr) &= -\sin v\,\mbox{,}\\
\cos \Bigl(v+\frac{\pi}{2}\Bigr) &= -\sin v\,\mbox{,}\\
\sin \Bigl(v+\frac{\pi}{2} \Bigr) &= \cos v\,\mbox{.}
\sin \Bigl(v+\frac{\pi}{2} \Bigr) &= \cos v\,\mbox{.}
Line 146: Line 146:
-
Alternativt kan man få fram dessa samband genom att spegla och/eller förskjuta graferna. Om man exempelvis vill ha ett samband där <math>\cos v</math> uttrycks med hjälp av sinus så kan man förskjuta grafen för cosinus så att den passar med sinuskurvan. Detta kan göras på flera olika sätt, men mest naturligt faller det sig att skriva <math>\cos v = \sin (v + \pi / 2)</math>. För att undvika misstag kan man kontrollera att det stämmer för några olika värden på <math>v</math>.
+
Alternatively, we can derive these relationships by reflecting and/or shifting the graph of sine and cosine. For instance, if we want to express <math>\cos v</math> as the sine of an angle, we can shift the graph of <math>\sin v</math> along in the <math>v</math> direction, so that it coincides with the graph of <math>\cos v</math>. This can be done in several ways, but the most natural is to write <math>\cos v = \sin (v + \pi / 2)</math>. To avoid mistakes, we can check that this is true for several different values of <math>v</math>.
-
<center>{{:4.3 - Figur - Kurvorna y = cos x och y = sin x}}</center>
+
<center>{{:4.3 - Figure - The curves y = cos x and y = sin x}}</center>
-
Kontroll: <math>\ \cos 0 = \sin (0 + \pi / 2)=1</math>.
+
Check: <math>\ \cos 0 = \sin (0 + \pi / 2)=1</math>.
-
== Additions- och subtraktionsformlerna och formler för dubbla vinkeln ==
+
== The addition, subtraction and double-angle formulas ==
-
Ofta behöver man behandla uttryck där två eller flera vinklar är inblandade, t.ex. <math>\sin(u+v)</math>. Man behöver då de s.k. additionsformlerna. För sinus och cosinus har formlerna utseendet
+
We often need to deal with expressions in which two or more angles are involved, such as <math>\sin(u+v)</math>. We will then need the so-called "addition formulas" . For sine and cosine the formulas are:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\sin(u + v) &= \sin u\,\cos v + \cos u\,\sin v\,\mbox{,}\\
\sin(u + v) &= \sin u\,\cos v + \cos u\,\sin v\,\mbox{,}\\
\sin(u – v) &= \sin u\,\cos v – \cos u\,\sin v\,\mbox{,}\\
\sin(u – v) &= \sin u\,\cos v – \cos u\,\sin v\,\mbox{,}\\
Line 167: Line 167:
</div>
</div>
-
Om man vill veta sinus eller cosinus för dubbla vinkeln, dvs <math>\sin 2v</math> eller <math>\cos 2v</math>, så kan man skriva uttrycken som <math>\sin(v + v)</math> eller <math>\cos(v + v)</math> och använda additionsformlerna ovan och få
+
If we want to know the sine or cosine of a double angle, that is <math>\sin 2v</math> or <math>\cos 2v</math>, we can use the addition formulas above to get the double-angle formulas:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\sin 2v &= 2 \sin v \cos v\,\mbox{,}\\
\sin 2v &= 2 \sin v \cos v\,\mbox{,}\\
-
\cos 2v &= \cos^2\!v – \sin^2\!v \,\mbox{.}\\
+
\cos 2v &= \cos^2\!v\ \ \sin^2\!v \,\mbox{.}\\
\end{align*}</math>}}
\end{align*}</math>}}
</div>
</div>
-
Ur dessa samband kan vi sedan få fram formler för halva vinkeln. Genom att byta ut <math>2v</math> mot <math>v</math>, och följdaktligen <math>v</math> mot <math>v/2</math>, i formeln för <math>\cos 2v</math> får vi att
+
From these relationships, we can also derive formulas for half angles. By replacing <math>2v</math> by <math>v</math>, and consequently <math>v</math> by <math>v/2</math>, in the formula for <math>\cos 2v</math> we get that
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
\cos v = \cos^2\!\frac{v}{2} – \sin^2\!\frac{v}{2}\,\mbox{.}</math>}}
+
\cos v = \cos^2\!\left(\frac{v}{2}\right)\ \ \sin^2\!\left(\frac{v}{2}\right)\,\mbox{.}</math>}}
-
Vill vi ha en formel för <math>\sin(v/2)</math> så använder vi därefter den trigonometriska ettan för att bli av med <math>\cos^2(v/2)</math>
+
If we want a formula for <math>\sin(v/2)</math> we use the Pythagorean identity to write <math>\cos^2(v/2)</math> in terms of <math>\sin^2(v/2)</math>. Then
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
\cos v = 1 – \sin^2\!\frac{v}{2} – \sin^2\!\frac{v}{2}
+
\cos v = 1 – \sin^2\!\left(\frac{v}{2}\right) – \sin^2\!\left(\frac{v}{2}\right)
-
= 1 – 2\sin^2\!\frac{v}{2}</math>}}
+
= 1 – 2\sin^2\!\left(\frac{v}{2}\right)</math>}}
-
dvs.
+
so that
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
\sin^2\!\frac{v}{2} = \frac{1 – \cos v}{2}\,\mbox{.}</math>}}
+
\sin^2\!\left(\frac{v}{2}\right) = \frac{1 – \cos v}{2}\,\mbox{.}</math>}}
</div>
</div>
-
På motsvarande sätt kan vi med den trigonometriska ettan göra oss av med <math>\sin^2(v/2)</math>. Då får vi istället
+
Similarly, we can write <math>\sin^2(v/2)</math> in terms of <math>\cos^2(v/2)</math>. Then we will arrive at
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
\cos^2\!\frac{v}{2} = \frac{1 + \cos v}{2}\,\mbox{.}</math>}}
+
\cos^2\!\left(\frac{v}{2}\right) = \frac{1 + \cos v}{2}\,\mbox{.}</math>}}
</div>
</div>
-
[[4.3 Övningar|Övningar]]
+
[[4.3 Exercises|Exercises]]
<div class="inforuta" style="width:580px;">
<div class="inforuta" style="width:580px;">
-
'''Råd för inläsning'''
+
'''Study advice'''
-
'''Grund- och slutprov'''
+
'''The basic and final tests'''
-
Efter att du har läst texten och arbetat med övningarna ska du göra grund- och slutprovet för att bli godkänd på detta avsnitt. Du hittar länken till proven i din student lounge.
+
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
-
'''Tänk på att:'''
+
'''Keep in mind that...'''
-
Enhetscirkeln är ett ovärderligt hjälpmedel för att hitta trigonometriska samband. Sådana finns det gott om och det är ingen idé att försöka lära sig alla utantill. Det är också tidsödande att behöva slå upp och leta fram dem hela tiden. Därför är det mycket bättre att du lär dig använda enhetscirkeln.
+
The unit circle is an invaluable tool for deriving trigonometric relationships. There are lots of these, and there is no point in trying to learn all of them by heart. It is also time-consuming to have to look them up all the time. Therefore, it is much better that you learn how to use the unit circle.
-
Den allra mest kända trigonometriska formeln är den s k trigonometriska ettan. Den gäller för alla vinklar, inte bara för spetsiga. Den hänger ihop med Pythagoras sats.
+
The most famous trigonometric formula is the so-called Pythagorean identity. It applies to all angles, not just acute angles. It is based on the Pythagoras theorem.
-
'''Lästips'''
+
'''Useful web sites'''
-
för dig som vill fördjupa dig ytterligare eller behöver en längre förklaring vill vi tipsa om:
+
[http://www.ies.co.jp/math/java/trig/cosbox/cosbox.html Experiment with the cosine “box” ]
-
[http://www.theducation.se/kurser/umaprep/4_trigonometri/43_trig_formler/432_addisionsformlerna/index.asp Läs mer om trigonometriska formler i Theducations gymnasielexikon]
 
- 
-
[http://www.theducation.se/kurser/umaprep/4_trigonometri/43_trig_formler/432_addisionsformlerna/index.asp Läs mer om area-, sinus och cosinussatserna i Theducations gymnasielexikon]
 
- 
-
[http://matmin.kevius.com/trigonometri.html Läs mer om trigonometri i Bruno Kevius matematiska ordlista]
 
- 
- 
-
'''Länktips'''
 
- 
-
[http://www.ies.co.jp/math/java/trig/cosbox/cosbox.html Experimentera med cosinus "lådan"]
 
- 
-
[http://www.kth.se Testa dig själv i trigonometri - slå ditt eget ekord]
 
</div>
</div>

Current revision

       Theory          Exercises      

Contents:

  • The Pythagorean identity
  • The double-angle and half-angle formulas
  • Addition and subtraction formulas

Learning outcome:

After this section, you will have learned how to:

  • Derive trigonometric relationships from symmetries in the unit circle.
  • Simplify trigonometric expressions with the help of trigonometric formulas.

Introduction

There are a variety of trigonometric formulas which relate the sine, cosine or tangent for an angle or multiples of an angle. They are usually known as the trigonometric identities. Here we will give some of these trigonometric relationships, and show how to derive them. There are many more than we can deal with in this course, but most can be derived from the so-called Pythagorean identity and the addition and subtraction formulas (see below), which are important to know by heart.


The Pythagorean identity

This identity is the most basic, but is in fact nothing more than Pythagorean theorem, applied to the unit circle. The right-angled triangle on the right shows that

\displaystyle (\sin v)^2 + (\cos v)^2 = 1\,\mbox{,}

which is usually written as \displaystyle \sin^2\!v + \cos^2\!v = 1.

[Image]


Symmetries

With the help of the unit circle and by exploiting the symmetries we obtain a large number of relationships between the cosine and sine functions:

\displaystyle
 \begin{align*}
   \cos (-v) &= \cos v\vphantom{\Bigl(}\\
   \sin (-v) &= - \sin v\vphantom{\Bigl(}\\
   \cos (\pi-v) &= - \cos v\vphantom{\Bigl(}\\
   \sin (\pi-v) &= \sin v\vphantom{\Bigl(}\\
 \end{align*}
 \qquad\quad
 \begin{align*}
   \cos \Bigl(\displaystyle \frac{\pi}{2} -v \Bigr) &= \sin v\\
   \sin \Bigl(\displaystyle \frac{\pi}{2} -v \Bigr) &= \cos v\\
   \cos \Bigl(v + \displaystyle \frac{\pi}{2} \Bigr) &= - \sin v\\
   \sin \Bigl( v + \displaystyle \frac{\pi}{2} \Bigr) &= \cos v\\
 \end{align*}

Instead of trying to learn all of these relationships by heart, it is better to learn how to derive them from the unit circle.


Reflection in the x-axis

[Image]


When an angle \displaystyle v is reflected in the x-axis it becomes \displaystyle -v.


Reflection does not affect the x- coordinate while the y-coordinate changes sign, so that

\displaystyle \begin{align*}
   \cos(-v) &= \cos v\,\mbox{,}\\
   \sin (-v) &= - \sin v\,\mbox{.}\\
 \end{align*}


Reflection in the y-axis

[Image]


Reflection in the y-axis changes the angle from \displaystyle v to \displaystyle \pi-v (the reflection makes an angle \displaystyle v with the negative x-axis).


This reflection does not affect the y-coordinate, while the x-coordinate changes sign, so we see that

\displaystyle \begin{align*}
   \cos(\pi-v) &= -\cos v\,\mbox{,}\\
   \sin (\pi-v) &= \sin v\,\mbox{.}\\
 \end{align*}


Reflection in the line y = x

[Image]


The angle \displaystyle v is changed to \displaystyle \pi/2 - v (the reflected line makes an angle \displaystyle v with the positive y-axis).


This reflection swaps the x- and y-coordinates, so that

\displaystyle \begin{align*}
   \cos \Bigl(\frac{\pi}{2} - v \Bigr) &= \sin v\,\mbox{.}\\
   \sin \Bigl(\frac{\pi}{2} - v \Bigr) &= \cos v\,\mbox{.}\\
 \end{align*}


Rotation by an angle of \displaystyle \mathbf{\pi/2}

[Image]


A rotation \displaystyle \pi/2 of the angle \displaystyle v means that the angle becomes \displaystyle v+\pi/2.


The rotation turns the x-coordinate into the new y-coordinate and the y-coordinate turns into the new x-coordinate with the opposite sign, so that

\displaystyle \begin{align*}
   \cos \Bigl(v+\frac{\pi}{2}\Bigr) &= -\sin v\,\mbox{,}\\
   \sin \Bigl(v+\frac{\pi}{2} \Bigr) &= \cos v\,\mbox{.}
 \end{align*}


Alternatively, we can derive these relationships by reflecting and/or shifting the graph of sine and cosine. For instance, if we want to express \displaystyle \cos v as the sine of an angle, we can shift the graph of \displaystyle \sin v along in the \displaystyle v direction, so that it coincides with the graph of \displaystyle \cos v. This can be done in several ways, but the most natural is to write \displaystyle \cos v = \sin (v + \pi / 2). To avoid mistakes, we can check that this is true for several different values of \displaystyle v.

[Image]


Check: \displaystyle \ \cos 0 = \sin (0 + \pi / 2)=1.


The addition, subtraction and double-angle formulas

We often need to deal with expressions in which two or more angles are involved, such as \displaystyle \sin(u+v). We will then need the so-called "addition formulas" . For sine and cosine the formulas are:

\displaystyle \begin{align*}
   \sin(u + v) &= \sin u\,\cos v + \cos u\,\sin v\,\mbox{,}\\
   \sin(u – v) &= \sin u\,\cos v – \cos u\,\sin v\,\mbox{,}\\
   \cos(u + v) &= \cos u\,\cos v – \sin u\,\sin v\,\mbox{,}\\
   \cos(u – v) &= \cos u\,\cos v + \sin u\,\sin v\,\mbox{.}\\
 \end{align*}

If we want to know the sine or cosine of a double angle, that is \displaystyle \sin 2v or \displaystyle \cos 2v, we can use the addition formulas above to get the double-angle formulas:

\displaystyle \begin{align*}
   \sin 2v &= 2 \sin v \cos v\,\mbox{,}\\
   \cos 2v &= \cos^2\!v\ –\ \sin^2\!v \,\mbox{.}\\
 \end{align*}

From these relationships, we can also derive formulas for half angles. By replacing \displaystyle 2v by \displaystyle v, and consequently \displaystyle v by \displaystyle v/2, in the formula for \displaystyle \cos 2v we get that

\displaystyle
 \cos v = \cos^2\!\left(\frac{v}{2}\right)\ –\ \sin^2\!\left(\frac{v}{2}\right)\,\mbox{.}

If we want a formula for \displaystyle \sin(v/2) we use the Pythagorean identity to write \displaystyle \cos^2(v/2) in terms of \displaystyle \sin^2(v/2). Then

\displaystyle
 \cos v = 1 – \sin^2\!\left(\frac{v}{2}\right) – \sin^2\!\left(\frac{v}{2}\right)
        = 1 – 2\sin^2\!\left(\frac{v}{2}\right)

so that

\displaystyle
 \sin^2\!\left(\frac{v}{2}\right) = \frac{1 – \cos v}{2}\,\mbox{.}

Similarly, we can write \displaystyle \sin^2(v/2) in terms of \displaystyle \cos^2(v/2). Then we will arrive at

\displaystyle
 \cos^2\!\left(\frac{v}{2}\right) = \frac{1 + \cos v}{2}\,\mbox{.}


Exercises

Study advice

The basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that...

The unit circle is an invaluable tool for deriving trigonometric relationships. There are lots of these, and there is no point in trying to learn all of them by heart. It is also time-consuming to have to look them up all the time. Therefore, it is much better that you learn how to use the unit circle.

The most famous trigonometric formula is the so-called Pythagorean identity. It applies to all angles, not just acute angles. It is based on the Pythagoras theorem.


Useful web sites

Experiment with the cosine “box”