2.1 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (23:45, 11 November 2008) (edit) (undo)
 
(23 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[1.2 Bråkräkning|Teori]]}}
+
{{Not selected tab|[[2.1 Algebraic expressions|Theory]]}}
-
{{Mall:Vald flik|[[1.2 Övningar|Övningar]]}}
+
{{Selected tab|[[2.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.1:1===
+
===Exercise 2.1:1===
<div class="ovning">
<div class="ovning">
-
Utveckla
+
Expand
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 31: Line 31:
||<math> (5x^3+3x^5)^2</math>
||<math> (5x^3+3x^5)^2</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:1|Lösning a|Lösning 2.1:1a|Lösning b|Lösning 2.1:1b|Lösning c|Lösning 2.1:1c|Lösning d|Lösning 2.1:1d|Lösning e|Lösning 2.1:1e|Lösning f|Lösning 2.1:1f|Lösning g|Lösning 2.1:1g|Lösning h|Lösning 2.1:1h}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:1|Solution a|Solution 2.1:1a|Solution b|Solution 2.1:1b|Solution c|Solution 2.1:1c|Solution d|Solution 2.1:1d|Solution e|Solution 2.1:1e|Solution f|Solution 2.1:1f|Solution g|Solution 2.1:1g|Solution h|Solution 2.1:1h}}
-
===Övning 2.1:2===
+
===Exercise 2.1:2===
<div class="ovning">
<div class="ovning">
-
Utveckla
+
Expand
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 51: Line 51:
||<math> (a+b)^2+(a-b)^2</math>
||<math> (a+b)^2+(a-b)^2</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:2|Lösning a|Lösning 2.1:2a|Lösning b|Lösning 2.1:2b|Lösning c|Lösning 2.1:2c|Lösning d|Lösning 2.1:2d|Lösning e|Lösning 2.1:2e}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d|Solution e|Solution 2.1:2e}}
-
===Övning 2.1:3===
+
===Exercise 2.1:3===
<div class="ovning">
<div class="ovning">
-
Faktorisera s&aring; l&aring;ngt som m&ouml;jligt
+
Factorise and simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 71: Line 71:
||<math> 16x^2+8x+1</math>
||<math> 16x^2+8x+1</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:3|Lösning a|Lösning 2.1:3a|Lösning b|Lösning 2.1:3b|Lösning c|Lösning 2.1:3c|Lösning d|Lösning 2.1:3d|Lösning e|Lösning 2.1:3e|Lösning f|Lösning 2.1:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d|Solution e|Solution 2.1:3e|Solution f|Solution 2.1:3f}}
-
===Övning 2.1:4===
+
===Exercise 2.1:4===
<div class="ovning">
<div class="ovning">
-
Bestäm koefficienterna framför <math>\,x\,</math> och <math>\,x^2\</math> när följande uttryck utvecklas
+
Determine the coefficients in front of <math>\,x\,</math> and <math>\,x^2\</math> when the following expressions are expanded out.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 87: Line 87:
|-
|-
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:4|Lösning a|Lösning 2.1:4a|Lösning b|Lösning 2.1:4b|Lösning c|Lösning 2.1:4c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c}}
-
===Övning 2.1:5===
+
===Exercise 2.1:5===
<div class="ovning">
<div class="ovning">
-
Förenkla så långt som möjligt
+
Simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 103: Line 103:
|| <math>\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</math>
|| <math>\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:5|Lösning a|Lösning 2.1:5a|Lösning b|Lösning 2.1:5b|Lösning c|Lösning 2.1:5c|Lösning d|Lösning 2.1:5d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b|Solution c|Solution 2.1:5c|Solution d|Solution 2.1:5d}}
-
===Övning 2.1:6===
+
===Exercise 2.1:6===
<div class="ovning">
<div class="ovning">
-
Förenkla så långt som möjligt
+
Simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 119: Line 119:
|| <math>\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</math>
|| <math>\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:6|Lösning a|Lösning 2.1:6a|Lösning b|Lösning 2.1:6b|Lösning c|Lösning 2.1:6c|Lösning d|Lösning 2.1:6d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:6|Solution a|Solution 2.1:6a|Solution b|Solution 2.1:6b|Solution c|Solution 2.1:6c|Solution d|Solution 2.1:6d}}
-
===Övning 2.1:7===
+
===Exercise 2.1:7===
<div class="ovning">
<div class="ovning">
-
Bestäm koefficienterna framför <math>\,x\,</math> och <math>\,x^2\</math> när följande uttryck utvecklas
+
Simplify the following by writing them as a single ordinary fraction
-
{| width="100" cellspacing="10px"
+
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>\displaystyle \frac{2}{x+3}-\frac{2}{x+5}</math>
 +
|b)
 +
|width="33%" | <math>x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2}</math>
 +
|c)
 +
|width="33%" | <math>\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.1:7|Solution a|Solution 2.1:7a|Solution b|Solution 2.1:7b|Solution c|Solution 2.1:7c}}
 +
 
 +
===Exercise 2.1:8===
 +
<div class="ovning">
 +
Simplify the following fractions by writing them as a single ordinary
 +
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="33" | <math>\displaystyle \frac{2}{x+3}-\frac{2}{x+5}</math>
+
|width="33%" | <math>\displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ }</math>
|b)
|b)
-
|| <math>x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2}</math>
+
|width="33%" | <math>\displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}}</math>
|c)
|c)
-
|| <math>\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</math>
+
|width="33%" | <math>\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:7|Lösning a|Lösning 2.1:7a|Lösning b|Lösning 2.1:7b|Lösning c|Lösning 2.1:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:8|Solution a|Solution 2.1:8a|Solution b|Solution 2.1:8b|Solution c|Solution 2.1:8c}}

Current revision

       Theory          Exercises      


Exercise 2.1:1

Expand

a) \displaystyle 3x(x-1) b) \displaystyle (1+x-x^2)xy c) \displaystyle -x^2(4-y^2)
d) \displaystyle x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) e) \displaystyle (x-7)^2 f) \displaystyle (5+4y)^2
g) \displaystyle (y^2-3x^3)^2 h) \displaystyle (5x^3+3x^5)^2


Exercise 2.1:2

Expand

a) \displaystyle (x-4)(x-5)-3x(2x-3) b) \displaystyle (1-5x)(1+15x)-3(2-5x)(2+5x)
c) \displaystyle (3x+4)^2-(3x-2)(3x-8) d) \displaystyle (3x^2+2)(3x^2-2)(9x^4+4)
e) \displaystyle (a+b)^2+(a-b)^2

Exercise 2.1:3

Factorise and simplify as much as possible

a) \displaystyle x^2-36 b) \displaystyle 5x^2-20 c) \displaystyle x^2+6x+9
d) \displaystyle x^2-10x+25 e) \displaystyle 18x-2x^3 f) \displaystyle 16x^2+8x+1

Exercise 2.1:4

Determine the coefficients in front of \displaystyle \,x\, and \displaystyle \,x^2\ when the following expressions are expanded out.

a) \displaystyle (x+2)(3x^2-x+5)
b) \displaystyle (1+x+x^2+x^3)(2-x+x^2+x^4)
c) \displaystyle (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4)

Exercise 2.1:5

Simplify as much as possible

a) \displaystyle \displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x} b) \displaystyle \displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4}
c) \displaystyle \displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)} d) \displaystyle \displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}

Exercise 2.1:6

Simplify as much as possible

a) \displaystyle \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \displaystyle \left(\displaystyle\frac{y}{2x-y}-1\right) b) \displaystyle \displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2
c) \displaystyle \displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b} d) \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}

Exercise 2.1:7

Simplify the following by writing them as a single ordinary fraction

a) \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} b) \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} c) \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}

Exercise 2.1:8

Simplify the following fractions by writing them as a single ordinary

a) \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } b) \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} c) \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}