2.1 Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
(16 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[2.1 Algebraic expressions|Theory]]}} |
- | {{ | + | {{Selected tab|[[2.1 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Exercise 2.1:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Expand | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 31: | Line 31: | ||
||<math> (5x^3+3x^5)^2</math> | ||<math> (5x^3+3x^5)^2</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:1|Solution a|Solution 2.1:1a|Solution b|Solution 2.1:1b|Solution c|Solution 2.1:1c|Solution d|Solution 2.1:1d|Solution e|Solution 2.1:1e|Solution f|Solution 2.1:1f|Solution g|Solution 2.1:1g|Solution h|Solution 2.1:1h}} |
- | === | + | ===Exercise 2.1:2=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Expand | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 51: | Line 51: | ||
||<math> (a+b)^2+(a-b)^2</math> | ||<math> (a+b)^2+(a-b)^2</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d|Solution e|Solution 2.1:2e}} |
- | === | + | ===Exercise 2.1:3=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Factorise and simplify as much as possible | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 71: | Line 71: | ||
||<math> 16x^2+8x+1</math> | ||<math> 16x^2+8x+1</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d|Solution e|Solution 2.1:3e|Solution f|Solution 2.1:3f}} |
- | === | + | ===Exercise 2.1:4=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine the coefficients in front of <math>\,x\,</math> and <math>\,x^2\</math> when the following expressions are expanded out. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 87: | Line 87: | ||
|- | |- | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c}} |
- | === | + | ===Exercise 2.1:5=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Simplify as much as possible | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 103: | Line 103: | ||
|| <math>\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</math> | || <math>\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b|Solution c|Solution 2.1:5c|Solution d|Solution 2.1:5d}} |
- | === | + | ===Exercise 2.1:6=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Simplify as much as possible | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 119: | Line 119: | ||
|| <math>\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</math> | || <math>\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:6|Solution a|Solution 2.1:6a|Solution b|Solution 2.1:6b|Solution c|Solution 2.1:6c|Solution d|Solution 2.1:6d}} |
- | === | + | ===Exercise 2.1:7=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Simplify the following by writing them as a single ordinary fraction | |
- | {| width="100" cellspacing="10px" | + | {| width="100%" cellspacing="10px" |
|a) | |a) | ||
|width="33%" | <math>\displaystyle \frac{2}{x+3}-\frac{2}{x+5}</math> | |width="33%" | <math>\displaystyle \frac{2}{x+3}-\frac{2}{x+5}</math> | ||
Line 132: | Line 132: | ||
|width="33%" | <math>\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</math> | |width="33%" | <math>\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 2.1:7|Solution a|Solution 2.1:7a|Solution b|Solution 2.1:7b|Solution c|Solution 2.1:7c}} |
+ | |||
+ | ===Exercise 2.1:8=== | ||
+ | <div class="ovning"> | ||
+ | Simplify the following fractions by writing them as a single ordinary | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="33%" | <math>\displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ }</math> | ||
+ | |b) | ||
+ | |width="33%" | <math>\displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}}</math> | ||
+ | |c) | ||
+ | |width="33%" | <math>\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 2.1:8|Solution a|Solution 2.1:8a|Solution b|Solution 2.1:8b|Solution c|Solution 2.1:8c}} |
Current revision
Theory | Exercises |
Exercise 2.1:1
Expand
a) | \displaystyle 3x(x-1) | b) | \displaystyle (1+x-x^2)xy | c) | \displaystyle -x^2(4-y^2) |
d) | \displaystyle x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) | e) | \displaystyle (x-7)^2 | f) | \displaystyle (5+4y)^2 |
g) | \displaystyle (y^2-3x^3)^2 | h) | \displaystyle (5x^3+3x^5)^2 |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Solution g
Solution h
Exercise 2.1:2
Expand
a) | \displaystyle (x-4)(x-5)-3x(2x-3) | b) | \displaystyle (1-5x)(1+15x)-3(2-5x)(2+5x) |
c) | \displaystyle (3x+4)^2-(3x-2)(3x-8) | d) | \displaystyle (3x^2+2)(3x^2-2)(9x^4+4) |
e) | \displaystyle (a+b)^2+(a-b)^2 |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Exercise 2.1:3
Factorise and simplify as much as possible
a) | \displaystyle x^2-36 | b) | \displaystyle 5x^2-20 | c) | \displaystyle x^2+6x+9 |
d) | \displaystyle x^2-10x+25 | e) | \displaystyle 18x-2x^3 | f) | \displaystyle 16x^2+8x+1 |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Exercise 2.1:4
Determine the coefficients in front of \displaystyle \,x\, and \displaystyle \,x^2\ when the following expressions are expanded out.
a) | \displaystyle (x+2)(3x^2-x+5) |
b) | \displaystyle (1+x+x^2+x^3)(2-x+x^2+x^4) |
c) | \displaystyle (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4) |
Answer
Solution a
Solution b
Solution c
Exercise 2.1:5
Simplify as much as possible
a) | \displaystyle \displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x} | b) | \displaystyle \displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4} |
c) | \displaystyle \displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)} | d) | \displaystyle \displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)} |
Answer
Solution a
Solution b
Solution c
Solution d
Exercise 2.1:6
Simplify as much as possible
a) | \displaystyle \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \displaystyle \left(\displaystyle\frac{y}{2x-y}-1\right) | b) | \displaystyle \displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2 |
c) | \displaystyle \displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b} | d) | \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2} |
Answer
Solution a
Solution b
Solution c
Solution d
Exercise 2.1:7
Simplify the following by writing them as a single ordinary fraction
a) | \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} | b) | \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} | c) | \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2} |
Answer
Solution a
Solution b
Solution c
Exercise 2.1:8
Simplify the following fractions by writing them as a single ordinary
a) | \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } | b) | \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} | c) | \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}} |
Answer
Solution a
Solution b
Solution c