Processing Math: 82%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.1 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (23:45, 11 November 2008) (edit) (undo)
 
(14 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[1.2 Bråkräkning|Teori]]}}
+
{{Not selected tab|[[2.1 Algebraic expressions|Theory]]}}
-
{{Mall:Vald flik|[[1.2 Övningar|Övningar]]}}
+
{{Selected tab|[[2.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.1:1===
+
===Exercise 2.1:1===
<div class="ovning">
<div class="ovning">
-
Utveckla
+
Expand
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 31: Line 31:
||<math> (5x^3+3x^5)^2</math>
||<math> (5x^3+3x^5)^2</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:1|Lösning a|Lösning 2.1:1a|Lösning b|Lösning 2.1:1b|Lösning c|Lösning 2.1:1c|Lösning d|Lösning 2.1:1d|Lösning e|Lösning 2.1:1e|Lösning f|Lösning 2.1:1f|Lösning g|Lösning 2.1:1g|Lösning h|Lösning 2.1:1h}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:1|Solution a|Solution 2.1:1a|Solution b|Solution 2.1:1b|Solution c|Solution 2.1:1c|Solution d|Solution 2.1:1d|Solution e|Solution 2.1:1e|Solution f|Solution 2.1:1f|Solution g|Solution 2.1:1g|Solution h|Solution 2.1:1h}}
-
===Övning 2.1:2===
+
===Exercise 2.1:2===
<div class="ovning">
<div class="ovning">
-
Utveckla
+
Expand
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 51: Line 51:
||<math> (a+b)^2+(a-b)^2</math>
||<math> (a+b)^2+(a-b)^2</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:2|Lösning a|Lösning 2.1:2a|Lösning b|Lösning 2.1:2b|Lösning c|Lösning 2.1:2c|Lösning d|Lösning 2.1:2d|Lösning e|Lösning 2.1:2e}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Solution 2.1:2a|Solution b|Solution 2.1:2b|Solution c|Solution 2.1:2c|Solution d|Solution 2.1:2d|Solution e|Solution 2.1:2e}}
-
===Övning 2.1:3===
+
===Exercise 2.1:3===
<div class="ovning">
<div class="ovning">
-
Faktorisera s&aring; l&aring;ngt som m&ouml;jligt
+
Factorise and simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 71: Line 71:
||<math> 16x^2+8x+1</math>
||<math> 16x^2+8x+1</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:3|Lösning a|Lösning 2.1:3a|Lösning b|Lösning 2.1:3b|Lösning c|Lösning 2.1:3c|Lösning d|Lösning 2.1:3d|Lösning e|Lösning 2.1:3e|Lösning f|Lösning 2.1:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Solution 2.1:3a|Solution b|Solution 2.1:3b|Solution c|Solution 2.1:3c|Solution d|Solution 2.1:3d|Solution e|Solution 2.1:3e|Solution f|Solution 2.1:3f}}
-
===Övning 2.1:4===
+
===Exercise 2.1:4===
<div class="ovning">
<div class="ovning">
-
Bestäm koefficienterna framför <math>\,x\,</math> och <math>\,x^2\</math> när följande uttryck utvecklas
+
Determine the coefficients in front of <math>\,x\,</math> and <math>\,x^2\</math> when the following expressions are expanded out.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 87: Line 87:
|-
|-
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:4|Lösning a|Lösning 2.1:4a|Lösning b|Lösning 2.1:4b|Lösning c|Lösning 2.1:4c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Solution 2.1:4a|Solution b|Solution 2.1:4b|Solution c|Solution 2.1:4c}}
-
===Övning 2.1:5===
+
===Exercise 2.1:5===
<div class="ovning">
<div class="ovning">
-
Förenkla så långt som möjligt
+
Simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 103: Line 103:
|| <math>\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</math>
|| <math>\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:5|Lösning a|Lösning 2.1:5a|Lösning b|Lösning 2.1:5b|Lösning c|Lösning 2.1:5c|Lösning d|Lösning 2.1:5d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b|Solution c|Solution 2.1:5c|Solution d|Solution 2.1:5d}}
-
===Övning 2.1:6===
+
===Exercise 2.1:6===
<div class="ovning">
<div class="ovning">
-
Förenkla så långt som möjligt
+
Simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 119: Line 119:
|| <math>\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</math>
|| <math>\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:6|Lösning a|Lösning 2.1:6a|Lösning b|Lösning 2.1:6b|Lösning c|Lösning 2.1:6c|Lösning d|Lösning 2.1:6d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:6|Solution a|Solution 2.1:6a|Solution b|Solution 2.1:6b|Solution c|Solution 2.1:6c|Solution d|Solution 2.1:6d}}
-
===Övning 2.1:7===
+
===Exercise 2.1:7===
<div class="ovning">
<div class="ovning">
-
Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck
+
Simplify the following by writing them as a single ordinary fraction
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 132: Line 132:
|width="33%" | <math>\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</math>
|width="33%" | <math>\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:7|Lösning a|Lösning 2.1:7a|Lösning b|Lösning 2.1:7b|Lösning c|Lösning 2.1:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:7|Solution a|Solution 2.1:7a|Solution b|Solution 2.1:7b|Solution c|Solution 2.1:7c}}
 +
 
 +
===Exercise 2.1:8===
 +
<div class="ovning">
 +
Simplify the following fractions by writing them as a single ordinary
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>\displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ }</math>
 +
|b)
 +
|width="33%" | <math>\displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}}</math>
 +
|c)
 +
|width="33%" | <math>\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 2.1:8|Solution a|Solution 2.1:8a|Solution b|Solution 2.1:8b|Solution c|Solution 2.1:8c}}

Current revision

       Theory          Exercises      


Exercise 2.1:1

Expand

a) 3x(x1) b) (1+xx2)xy c) x2(4y2)
d) x3y2y11xy+1  e) (x7)2 f) (5+4y)2
g) (y23x3)2 h) (5x3+3x5)2


Exercise 2.1:2

Expand

a) (x4)(x5)3x(2x3) b) (15x)(1+15x)3(25x)(2+5x)
c) (3x+4)2(3x2)(3x8) d) (3x2+2)(3x22)(9x4+4)
e) (a+b)2+(ab)2

Exercise 2.1:3

Factorise and simplify as much as possible

a) x236 b) 5x220 c) x2+6x+9
d) x210x+25 e) 18x2x3 f) 16x2+8x+1

Exercise 2.1:4

Determine the coefficients in front of x and x2  when the following expressions are expanded out.

a) (x+2)(3x2x+5)
b) (1+x+x2+x3)(2x+x2+x4)
c) (xx3+x5)(1+3x+5x2)(27x2x4)

Exercise 2.1:5

Simplify as much as possible

a) 1xx2x1 b) 1y22y2y24
c) (x+1)(x+2)(3x212)(x21) d) (y2+4)(y24)(y2+4y+4)(2y4)

Exercise 2.1:6

Simplify as much as possible

a) xy+x2yx  y2xy1  b) xx2+xx+32
c) 2a+ba2ab2ab d) \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}

Exercise 2.1:7

Simplify the following by writing them as a single ordinary fraction

a) \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} b) \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} c) \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}

Exercise 2.1:8

Simplify the following fractions by writing them as a single ordinary

a) \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } b) \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} c) \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}