2.1 Algebraic expressions

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Regerate images and tabs)
Current revision (11:28, 2 November 2010) (edit) (undo)
(MGN --> LCD)
 
(15 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Vald flik|[[2.1 Algebraiska uttryck|Teori]]}}
+
{{Selected tab|[[2.1 Algebraic expressions|Theory]]}}
-
{{Ej vald flik|[[2.1 Övningar|Övningar]]}}
+
{{Not selected tab|[[2.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Contents:'''
-
*Distributiva lagen
+
* Distributive law
-
*Kvadreringsreglerna
+
* Squaring rules
-
*Konjugatregeln
+
*Difference of two squares
-
*Rationella uttryck
+
* Rational expressions
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Learning outcomes:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
After this section you will have learned how to:
-
*Förenkla komplicerade algebraiska uttryck.
+
*Simplify complex algebraic expressions.
-
*Faktorisera uttryck med kvadreringsreglerna och konjugatregeln.
+
*Factorise expressions with the use of squaring rules and the difference of two squares rule.
-
*Utveckla uttryck med kvadreringsreglerna och konjugatregeln.
+
*Expand expressions with the use of squaring rules and the difference of two squares rule.
}}
}}
-
== Distributiva lagen ==
+
== Distributive Law ==
-
[[Bild:miniräknare_skämt.gif|right]]
+
The distributive law specifies how to multiply a bracketed expression by a factor.
-
Den distributiva lagen anger hur man multiplicerar in en faktor i en parentes.
+
-
<center>{{:2.1 - Figur - Distributiva lagen}}</center>
+
<center>{{:2.1 - Figure - The distributive law}}</center>
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
''' Example 1'''
<ol type="a">
<ol type="a">
Line 47: Line 46:
</div>
</div>
-
Med den distributiva lagen kan vi också förstå hur vi kan hantera minustecken framför parentesuttryck. Regeln säger att en parentes med ett minustecken framför kan tas bort om alla termer inuti parentesen byter tecken.
+
Using the distributive law we can also see how to tackle
 +
a minus sign in front of a bracketed expression.
 +
The rule says that a minus sign infront of a bracket can be
 +
eliminated if all the terms inside the brackets switch signs.
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
''' Example 2'''
<ol type="a">
<ol type="a">
Line 56: Line 58:
<li><math>-(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x
<li><math>-(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x
= -x^2 +x</math><br/>
= -x^2 +x</math><br/>
-
:där vi i sista ledet använt att <math>-(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.}</math></li>
+
where we have in the final step used <math>-(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.}</math></li>
<li><math>-(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x
<li><math>-(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x
+ (-1) \cdot y -(-1)\cdot y^3</math><br/>
+ (-1) \cdot y -(-1)\cdot y^3</math><br/>
Line 65: Line 67:
</div>
</div>
-
Om den distributiva lagen används baklänges så sägs vi faktorisera uttrycket. Ofta försöker man bryta ut en så stor faktor som möjligt.
+
If the distributive law is applied in reverse we say we “factorise” the expression.
 +
One would often like to factorise out the largest possible numerical factor.
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Example 3'''
<ol type="a">
<ol type="a">
Line 79: Line 82:
-
== Kvadreringsreglerna ==
+
== Squaring rules ==
-
Den distributiva lagen behöver ibland användas upprepade gånger för att behandla större uttryck. Om vi betraktar
+
On occasions the distributive law has to be used repeatedly to deal with larger expressions.
 +
If we consider
-
{{Fristående formel||<math>(a+b)(c+d)</math>}}
+
{{Displayed math||<math>(a+b)(c+d)</math>}}
-
och ser <math>a+b</math> som en faktor som multipliceras in i parentesen (c+d) så får vi
+
and regard <math>a+b</math> as a factor that multiplies the bracketed expression <math>(c+d)</math> we get
-
{{Fristående formel||<math>\eqalign{
+
{{Displayed math||<math>\eqalign{
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
&= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
&= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
Line 94: Line 98:
&= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}}
&= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}}
-
Sedan kan <math>c</math> och <math>d</math> multipliceras in i respektive parentes
+
Then the <math>c</math> and the <math>d</math> are multiplied into their respective brackets,
-
{{Fristående formel||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}}
+
{{Displayed math||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}}
-
Ett minnesvärt sätt att sammanfatta formeln är:
+
A mnemonic for this formula is:
-
<center>{{:2.1 - Figur - Distributiva lagen två gånger}}</center>
+
<center>{{:2.1 - Figure - The distributive law twice}}</center>
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
''' Example 4'''
<ol type="a">
<ol type="a">
Line 115: Line 119:
= 2-x-2x+x^2</math><br/>
= 2-x-2x+x^2</math><br/>
<math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math>
<math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math>
-
:där vi använt att <math>-x\cdot (-x) = (-1)x \cdot (-1)x = (-1)^2 x^2 = 1\cdot x^2 = x^2</math>.
+
where we have used <math>-x\cdot (-x) = (-1)x \cdot (-1)x = (-1)^2 x^2 = 1\cdot x^2 = x^2</math>.
</ol>
</ol>
</div>
</div>
-
Två viktiga specialfall av ovanstående formel är när <math>a+b</math> och <math>c+d</math> är samma uttryck
+
Two important special cases of the above formula are when <math>a+b</math> and <math>c+d</math> are the same expression
<div class="regel">
<div class="regel">
-
'''Kvadreringsreglerna'''
+
'''Squaring rules '''
-
{{Fristående formel||<math>(a+b)^2 = a^2 +2ab + b^2</math>}}
+
{{Displayed math||<math>(a+b)^2 = a^2 +2ab + b^2</math>}}
-
{{Fristående formel||<math>(a-b)^2 = a^2 -2ab + b^2</math>}}
+
{{Displayed math||<math>(a-b)^2 = a^2 -2ab + b^2</math>}}
</div>
</div>
-
Dessa formler kallas för första och andra kvadreringsregeln.
+
These formulas are called the first and second squaring rules.
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Example 5'''
<ol type="a">
<ol type="a">
<li><math>(x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4</math></li>
<li><math>(x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4</math></li>
<li><math>(-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9</math> <br>
<li><math>(-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9</math> <br>
-
:där <math>(-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \cdot x^2 = x^2\,\mbox{.}</math></li>
+
: where <math>(-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \cdot x^2 = x^2\,\mbox{.}</math></li>
<li><math>(x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2
<li><math>(x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2
= x^4 -8x^2 +16</math></li>
= x^4 -8x^2 +16</math></li>
Line 151: Line 155:
</div>
</div>
-
Kvadreringsreglerna används också i omvänd riktning för att faktorisera uttryck.
+
The squaring rules are also used in the reverse direction to factorise expressions.
<div class="exempel">
<div class="exempel">
-
'''Exempel 6'''
+
''' Example 6'''
<ol type="a">
<ol type="a">
Line 165: Line 169:
-
== Konjugatregeln ==
+
== Difference of two squares ==
-
Ett tredje specialfall av den första formeln i förra avsnittet är konjugatregeln
+
A third special case of the first formula in the last section is the difference of two squares rule.
<div class="regel">
<div class="regel">
-
'''Konjugatregeln:'''
+
'''Difference of two squares:'''
-
{{Fristående formel||<math>(a+b)(a-b) = a^2 -b^2</math>}}
+
{{Displayed math||<math>(a+b)(a-b) = a^2 -b^2</math>}}
</div>
</div>
-
Denna formel kan vi få fram direkt genom att utveckla vänsterledet
+
This formula can be obtained directly by expanding the left hand side
-
{{Fristående formel||<math>(a+b)(a-b)
+
{{Displayed math||<math>(a+b)(a-b)
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
= a^2 -ab+ab-b^2
= a^2 -ab+ab-b^2
Line 182: Line 186:
<div class="exempel">
<div class="exempel">
-
'''Exempel 7'''
+
''' Example 7'''
<ol type="a">
<ol type="a">
Line 195: Line 199:
-
== Rationella uttryck ==
+
== Rational expressions==
-
Räkning med algebraiska uttryck som innehåller bråk liknar till stor del vanlig bråkräkning.
+
Calculations of fractions containing algebraic expressions are largely similar to ordinary calculations with fractions.
-
Multiplikation och division av bråkuttryck följer samma räkneregler som gäller för vanliga bråktal,
+
Multiplication and division of fractions containing algebraic expressions follow the same rules that apply to ordinary fractions,
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math> \frac{a}{b} \cdot \frac{c}{d}
+
{{Displayed math||<math> \frac{a}{b} \cdot \frac{c}{d}
= \frac{a\cdot c}{b\cdot d}
= \frac{a\cdot c}{b\cdot d}
-
\quad \mbox{och} \quad
+
\quad \mbox{and} \quad
\frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
\frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
= \frac{a\cdot d}{b\cdot c} \; \mbox{.}</math>}}
= \frac{a\cdot d}{b\cdot c} \; \mbox{.}</math>}}
Line 210: Line 214:
<div class="exempel">
<div class="exempel">
-
'''Exempel 8'''
+
''' Example 8'''
<ol type="a">
<ol type="a">
Line 223: Line 227:
</div>
</div>
-
Förlängning av ett bråkuttryck innebär att vi multiplicerar täljare och nämnare med samma faktor
+
A fractional expression can have its numerator and denominator multiplied by the same factor
-
{{Fristående formel||<math>\frac{x+2}{x+1}
+
{{Displayed math||<math>\frac{x+2}{x+1}
= \frac{(x+2)(x+3)}{(x+1)(x+3)}
= \frac{(x+2)(x+3)}{(x+1)(x+3)}
= \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
= \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
= \dots</math>}}
= \dots</math>}}
-
Förkortning av ett bråkuttryck innebär att vi stryker faktorer som täljaren och nämnaren har gemensamt
+
The opposite of this is cancellation. Here we delete factors that the numerator and denominator have in common
-
 
+
{{Displayed math||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
-
{{Fristående formel||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
+
= \frac{(x+2)(x+4)}{(x+1)(x+4)}
= \frac{(x+2)(x+4)}{(x+1)(x+4)}
= \frac{x+2}{x+1} \mbox{.}</math>}}
= \frac{x+2}{x+1} \mbox{.}</math>}}
<div class="exempel">
<div class="exempel">
-
'''Exempel 9'''
+
''' Example 9'''
<ol type="a">
<ol type="a">
Line 244: Line 247:
<li><math>\frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}</math></li>
<li><math>\frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}</math></li>
<li><math>\frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)}
<li><math>\frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)}
-
= \left\{\,\text{konjugatregeln}\,\right\}
+
= \left\{\,\text{Difference of two squares}\,\right\}
= \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)}
= \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)}
= \frac{x-y}{x+2}</math></li>
= \frac{x-y}{x+2}</math></li>
Line 250: Line 253:
</div>
</div>
-
När bråkuttryck adderas eller subtraheras behöver de, om så är nödvändigt, förlängas så att de får samma nämnare innan täljarna kan kombineras ihop,
+
When fractional expressions are added or subtracted they may need to be converted so that they have the same denominator. Only then can the numerators be combined together.
-
{{Fristående formel||<math>\frac{1}{x} - \frac{1}{x-1}
+
 
 +
{{Displayed math||<math>\frac{1}{x} - \frac{1}{x-1}
= \frac{1}{x} \cdot \frac{x-1}{x-1} - \frac{1}{x-1} \cdot \frac{x}{x}
= \frac{1}{x} \cdot \frac{x-1}{x-1} - \frac{1}{x-1} \cdot \frac{x}{x}
= \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
= \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
Line 258: Line 262:
= \frac{-1}{x(x-1)} \; \mbox{.}</math>}}
= \frac{-1}{x(x-1)} \; \mbox{.}</math>}}
-
Ofta försöker man förlänga med så lite som möjligt för att underlätta räknandet. Minsta gemensamma nämnare (MGN) är den gemensamma nämnare som innehåller minst antal faktorer.
+
One normally tries to convert the fractions by multiplying the numerators and denominators by minimal factors to facilitate the calculations. The lowest common denominator (LCD) is the common denominator which contains the least number of factors.
<div class="exempel">
<div class="exempel">
-
'''Exempel 10'''
+
''' Example 10'''
<ol type="a">
<ol type="a">
-
<li><math>\frac{1}{x+1} + \frac{1}{x+2}\quad</math> har <math>\ \text{MGN}
+
<li><math>\frac{1}{x+1} + \frac{1}{x+2}\quad</math> has <math>\ \text{LCD}
= (x+1)(x+2)</math> <br><br>
= (x+1)(x+2)</math> <br><br>
-
Förläng den första termen med <math>(x+2)</math> och den andra termen med <math>(x+1)</math>
+
Convert the first term using <math>(x+2)</math> and the second term using <math>(x+1)</math>
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\frac{1}{x+1} + \frac{1}{x+2}
\frac{1}{x+1} + \frac{1}{x+2}
&= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
&= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
Line 273: Line 277:
= \frac{2x+3}{(x+1)(x+2)}\:\mbox{.}
= \frac{2x+3}{(x+1)(x+2)}\:\mbox{.}
\end{align*}</math>}}</li>
\end{align*}</math>}}</li>
-
<li><math>\frac{1}{x} + \frac{1}{x^2}\quad</math> har <math>\ \text{MGN}
+
<li><math>\frac{1}{x} + \frac{1}{x^2}\quad</math> has <math>\ \text{LCD}
= x^2</math><br><br>
= x^2</math><br><br>
-
Vi behöver bara förlänga den första termen för att få en gemensam nämnare
+
We only need to convert the first term to get a common denominator
-
{{Fristående formel||<math>\frac{1}{x} + \frac{1}{x^2}
+
{{Displayed math||<math>\frac{1}{x} + \frac{1}{x^2}
= \frac{x}{x^2} + \frac{1}{x^2}
= \frac{x}{x^2} + \frac{1}{x^2}
= \frac{x+1}{x^2}\,\mbox{.}</math>}}</li>
= \frac{x+1}{x^2}\,\mbox{.}</math>}}</li>
-
<li><math>\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad</math> har <math>\
+
<li><math>\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad</math> has <math>\
-
\text{MGN}= x^2(x+1)^2(x+2)</math><br><br>
+
\text{LCD}= x^2(x+1)^2(x+2)</math><br><br>
-
Den första termen förlängs med <math>x(x+2)</math> medan den andra termen förlängs med <math>(x+1)^2</math>
+
The first term is converted using <math>x(x+2)</math> while the other term is converted using <math>(x+1)^2</math>
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
&= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
&= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
Line 291: Line 295:
&= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.}
&= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.}
\end{align*}</math>}}</li>
\end{align*}</math>}}</li>
-
<li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> har <math>\
+
<li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> has <math>\
-
\text{MGN}=x(x-1)(x+1)</math><br><br>
+
\text{LCD}=x(x-1)(x+1)</math><br><br>
-
Vi förlänger alla termer så att de får den gemensamma nämnaren <math>x(x-1)(x+1)</math>
+
We must convert all the terms so that they have the common denominator <math>x(x-1)(x+1)</math>
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\frac{x}{x+1} - \frac{1}{x(x-1)} -1
\frac{x}{x+1} - \frac{1}{x(x-1)} -1
&= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
&= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
Line 307: Line 311:
</div>
</div>
-
Vid förenkling av större uttryck är det ofta nödvändigt att både förlänga och förkorta i steg. Eftersom förkortning förutsätter att vi kan faktorisera uttryck är det viktigt att försöka behålla uttryck (t.ex. nämnare) faktoriserade och inte utveckla något som vi senare behöver faktorisera.
+
To simplify large expressions it is often necessary to both cancel factors and multiply numerators and denominators by factors. As cancellation implies that we have performed factorisations it is obvious we should try to keep expressions (such as the denominator) factorised and not expand something that we will later need to factorise.
 +
 
<div class="exempel">
<div class="exempel">
-
'''Exempel 11'''
+
''' Example 11'''
<ol type="a">
<ol type="a">
<li><math>\frac{1}{x-2} - \frac{4}{x^2-4}
<li><math>\frac{1}{x-2} - \frac{4}{x^2-4}
= \frac{1}{x-2} - \frac{4}{(x+2)(x-2)}
= \frac{1}{x-2} - \frac{4}{(x+2)(x-2)}
-
= \left\{\,\mbox{MGN}
+
= \left\{\,\mbox{LCD}
= (x+2)(x-2)\,\right\}</math><br/><br/>
= (x+2)(x-2)\,\right\}</math><br/><br/>
<math>\phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{}
<math>\phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{}
Line 340: Line 345:
-
[[2.1 Övningar|Övningar]]
+
[[2.1 Exercises|Exercises]]
<div class="inforuta" style="width:580px;">
<div class="inforuta" style="width:580px;">
-
'''Råd för inläsning'''
+
'''Study advice'''
-
'''Grund- och slutprov'''
+
'''The basic and final tests'''
-
Efter att du har läst texten och arbetat med övningarna ska du göra grund- och slutprovet för att bli godkänd på detta avsnitt. Du hittar länken till proven i din student lounge.
+
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
-
'''Tänk på att:'''
+
'''Keep in mind that...'''
-
Var noggrann. Om du gör ett fel på ett ställe så kommer resten av uträkningen också vara fel.
+
If you make a mistake somewhere the rest of the calculation will be wrong, so be careful!
-
Använd många mellanled. Om du är osäker på en uträkning utför då hellre enkla steg än ett stort steg.
+
Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step.
-
Utveckla inte i onödan. Du kan vid ett senare tillfälle vara tvungen att faktorisera tillbaka.
+
Do not expand unnecessarily. You later may be forced to factorise what you earlier expanded.
-
'''Lästips'''
+
'''Reviews
 +
'''
-
[http://en.wikipedia.org/wiki/Algebra Läs mer om algebra på engelska Wikipedia]
+
[http://en.wikipedia.org/wiki/Algebra Learn more about algebra in the English Wikipedia ]
-
[http://www.jamesbrennan.org/algebra/ Understanding Algebra - engelsk textbok på nätet]
+
[http://www.jamesbrennan.org/algebra/ Understanding Algebra - English text on the Web ]
-
'''Länktips'''
+
'''Useful web sites'''
</div>
</div>

Current revision

       Theory          Exercises      

Contents:

  • Distributive law
  • Squaring rules
  • Difference of two squares
  • Rational expressions

Learning outcomes:

After this section you will have learned how to:

  • Simplify complex algebraic expressions.
  • Factorise expressions with the use of squaring rules and the difference of two squares rule.
  • Expand expressions with the use of squaring rules and the difference of two squares rule.

Distributive Law

The distributive law specifies how to multiply a bracketed expression by a factor.

[Image]

Example 1

  1. \displaystyle 4(x+y) = 4x + 4y
  2. \displaystyle 2(a-b) = 2a -2b
  3. \displaystyle x \left(\frac{1}{x} + \frac{1}{x^2} \right) = x\cdot \frac{1}{x} + x \cdot \frac{1}{x^2} = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} = 1 + \frac{1}{x}
  4. \displaystyle a(x+y+z) = ax + ay + az

Using the distributive law we can also see how to tackle a minus sign in front of a bracketed expression. The rule says that a minus sign infront of a bracket can be eliminated if all the terms inside the brackets switch signs.

Example 2

  1. \displaystyle -(x+y) = (-1) \cdot (x+y) = (-1)x + (-1)y = -x-y
  2. \displaystyle -(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x = -x^2 +x
    where we have in the final step used \displaystyle -(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.}
  3. \displaystyle -(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x + (-1) \cdot y -(-1)\cdot y^3
    \displaystyle \phantom{-(x+y-y^3)}{} = -x-y+y^3
  4. \displaystyle x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2
    \displaystyle \phantom{x^2-2x-(3x+2)}{} = x^2 -5x -2

If the distributive law is applied in reverse we say we “factorise” the expression. One would often like to factorise out the largest possible numerical factor.

Example 3

  1. \displaystyle 3x +9y = 3x + 3\cdot 3y = 3(x+3y)
  2. \displaystyle xy + y^2 = xy + y\cdot y = y(x+y)
  3. \displaystyle 2x^2 -4x = 2x\cdot x - 2\cdot 2\cdot x = 2x(x-2)
  4. \displaystyle \frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1


Squaring rules

On occasions the distributive law has to be used repeatedly to deal with larger expressions. If we consider

\displaystyle (a+b)(c+d)

and regard \displaystyle a+b as a factor that multiplies the bracketed expression \displaystyle (c+d) we get

\displaystyle \eqalign{
 \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
   &= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
      + \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,d\mbox{,}\cr
 (a+b)\,(c+d)
   &= (a+b)\,c + (a+b)\,d\mbox{.}}

Then the \displaystyle c and the \displaystyle d are multiplied into their respective brackets,

\displaystyle (a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}

A mnemonic for this formula is:

[Image]

Example 4

  1. \displaystyle (x+1)(x-2) = x\cdot x + x \cdot (-2) + 1 \cdot x + 1 \cdot (-2) = x^2 -2x+x-2
    \displaystyle \phantom{(x+1)(x-2)}{}=x^2 -x-2
  2. \displaystyle 3(x-y)(2x+1) = 3(x\cdot 2x + x\cdot 1 - y \cdot 2x - y \cdot 1) = 3(2x^2 +x-2xy-y)
    \displaystyle \phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y
  3. \displaystyle (1-x)(2-x) = 1\cdot 2 + 1 \cdot (-x) -x\cdot 2 - x\cdot (-x) = 2-x-2x+x^2
    \displaystyle \phantom{(1-x)(2-x)}{}=2-3x+x^2 where we have used \displaystyle -x\cdot (-x) = (-1)x \cdot (-1)x = (-1)^2 x^2 = 1\cdot x^2 = x^2.

Two important special cases of the above formula are when \displaystyle a+b and \displaystyle c+d are the same expression

Squaring rules

\displaystyle (a+b)^2 = a^2 +2ab + b^2
\displaystyle (a-b)^2 = a^2 -2ab + b^2

These formulas are called the first and second squaring rules.

Example 5

  1. \displaystyle (x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4
  2. \displaystyle (-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9
    where \displaystyle (-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \cdot x^2 = x^2\,\mbox{.}
  3. \displaystyle (x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2 = x^4 -8x^2 +16
  4. \displaystyle (x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)
    \displaystyle \phantom{(x+1)^2-(x-1)^2}{}= x^2 +2x +1 -x^2 + 2x-1
    \displaystyle \phantom{(x+1)^2-(x-1)^2}{} = 2x+2x = 4x
  5. \displaystyle (2x+4)(x+2) = 2(x+2)(x+2) = 2(x+2)^2 = 2(x^2 + 4x+ 4)
    \displaystyle \phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8
  6. \displaystyle (x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)
    \displaystyle \phantom{(x-2)^3}{}=x \cdot x^2 + x\cdot (-4x) + x\cdot 4 - 2\cdot x^2 - 2 \cdot (-4x)-2 \cdot 4
    \displaystyle \phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 = x^3-6x^2 + 12x -8

The squaring rules are also used in the reverse direction to factorise expressions.

Example 6

  1. \displaystyle x^2 + 2x+ 1 = (x+1)^2
  2. \displaystyle x^6-4x^3 +4 = (x^3)^2 - 2\cdot 2x^3 +2^2 = (x^3-2)^2
  3. \displaystyle x^2 +x + \frac{1}{4} = x^2 + 2\cdot\frac{1}{2}x + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2


Difference of two squares

A third special case of the first formula in the last section is the difference of two squares rule.

Difference of two squares:

\displaystyle (a+b)(a-b) = a^2 -b^2

This formula can be obtained directly by expanding the left hand side

\displaystyle (a+b)(a-b)
 = a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
 = a^2 -ab+ab-b^2
 = a^2 -b^2\mbox{.}

Example 7

  1. \displaystyle (x-4y)(x+4y) = x^2 -(4y)^2 = x^2 -16y^2
  2. \displaystyle (x^2+2x)(x^2-2x)= (x^2)^2 - (2x)^2 = x^4 -4x^2
  3. \displaystyle (y+3)(3-y)= (3+y)(3-y) = 3^2 -y^2 = 9-y^2
  4. \displaystyle x^4 -16 = (x^2)^2 -4^2 = (x^2+4)(x^2-4) = (x^2+4)(x^2-2^2)
    \displaystyle \phantom{x^4-16}{}=(x^2+4)(x+2)(x-2)


Rational expressions

Calculations of fractions containing algebraic expressions are largely similar to ordinary calculations with fractions.

Multiplication and division of fractions containing algebraic expressions follow the same rules that apply to ordinary fractions,

\displaystyle \frac{a}{b} \cdot \frac{c}{d}
 = \frac{a\cdot c}{b\cdot d}
 \quad \mbox{and} \quad
 \frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
 = \frac{a\cdot d}{b\cdot c} \; \mbox{.}

Example 8

  1. \displaystyle \frac{3x}{x-y} \cdot \frac{4x}{2x+y} = \frac{3x\cdot 4x}{(x-y)\cdot(2x+y)} = \frac{12x^2}{(x-y)(2x+y)}
  2. \displaystyle \frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} = \frac{a^2}{x(x+1)}
  3. \displaystyle \frac{\displaystyle \frac{x}{(x+1)^2}}{\displaystyle \frac{x-2}{x-1}} = \frac{x(x-1)}{(x-2)(x+1)^2}

A fractional expression can have its numerator and denominator multiplied by the same factor

\displaystyle \frac{x+2}{x+1}
 = \frac{(x+2)(x+3)}{(x+1)(x+3)}
 = \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
 = \dots

The opposite of this is cancellation. Here we delete factors that the numerator and denominator have in common

\displaystyle \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
 = \frac{(x+2)(x+4)}{(x+1)(x+4)}
 = \frac{x+2}{x+1} \mbox{.}

Example 9

  1. \displaystyle \frac{x}{x+1} = \frac{x}{x+1} \cdot \frac{x+2}{x+2} = \frac{x(x+2)}{(x+1)(x+2)}
  2. \displaystyle \frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}
  3. \displaystyle \frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} = \left\{\,\text{Difference of two squares}\,\right\} = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} = \frac{x-y}{x+2}

When fractional expressions are added or subtracted they may need to be converted so that they have the same denominator. Only then can the numerators be combined together.


\displaystyle \frac{1}{x} - \frac{1}{x-1}
 = \frac{1}{x} \cdot \frac{x-1}{x-1} - \frac{1}{x-1} \cdot \frac{x}{x}
 = \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
 = \frac{x-1-x}{x(x-1)}
 = \frac{-1}{x(x-1)} \; \mbox{.}

One normally tries to convert the fractions by multiplying the numerators and denominators by minimal factors to facilitate the calculations. The lowest common denominator (LCD) is the common denominator which contains the least number of factors.

Example 10

  1. \displaystyle \frac{1}{x+1} + \frac{1}{x+2}\quad has \displaystyle \ \text{LCD} = (x+1)(x+2)

    Convert the first term using \displaystyle (x+2) and the second term using \displaystyle (x+1)
    \displaystyle \begin{align*}
       \frac{1}{x+1} + \frac{1}{x+2}
         &= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
         &= \frac{x+2+x+1}{(x+1)(x+2)}
          = \frac{2x+3}{(x+1)(x+2)}\:\mbox{.}
       \end{align*}
    
  2. \displaystyle \frac{1}{x} + \frac{1}{x^2}\quad has \displaystyle \ \text{LCD} = x^2

    We only need to convert the first term to get a common denominator
    \displaystyle \frac{1}{x} + \frac{1}{x^2}
       = \frac{x}{x^2} + \frac{1}{x^2}
       = \frac{x+1}{x^2}\,\mbox{.}
    
  3. \displaystyle \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad has \displaystyle \ \text{LCD}= x^2(x+1)^2(x+2)

    The first term is converted using \displaystyle x(x+2) while the other term is converted using \displaystyle (x+1)^2
    \displaystyle \begin{align*}
       \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
         &= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
            - \frac{(x+1)^2}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x}{x^2(x+1)^2(x+2)} - \frac{x^2+2x+1}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x-(x^2+2x+1)}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x-x^2-2x-1}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.}
       \end{align*}
    
  4. \displaystyle \frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad has \displaystyle \ \text{LCD}=x(x-1)(x+1)

    We must convert all the terms so that they have the common denominator \displaystyle x(x-1)(x+1)
    \displaystyle \begin{align*}
       \frac{x}{x+1} - \frac{1}{x(x-1)} -1
         &= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
            - \frac{x(x-1)(x+1)}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
            - \frac{x^3 -x}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2 -(x+1) -(x^3-x)}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2 -x-1 -x^3+x}{x(x-1)(x+1)}\\[4pt]
         &= \frac{-x^2-1}{x(x-1)(x+1)}\,\mbox{.}
       \end{align*}
    

To simplify large expressions it is often necessary to both cancel factors and multiply numerators and denominators by factors. As cancellation implies that we have performed factorisations it is obvious we should try to keep expressions (such as the denominator) factorised and not expand something that we will later need to factorise.


Example 11

  1. \displaystyle \frac{1}{x-2} - \frac{4}{x^2-4} = \frac{1}{x-2} - \frac{4}{(x+2)(x-2)} = \left\{\,\mbox{LCD} = (x+2)(x-2)\,\right\}

    \displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2}{(x+2)(x-2)} - \frac{4}{(x+2)(x-2)}

    \displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2 -4}{(x+2)(x-2)} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2}
  2. \displaystyle \frac{x + \displaystyle \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2}{x} + \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2+1}{x}}{x^2+1} = \frac{x^2+1}{x(x^2+1)} = \frac{1}{x}
  3. \displaystyle \frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y} = \frac{\displaystyle \frac{y^2}{x^2y^2} - \frac{x^2}{x^2y^2}}{x+y} = \frac{\displaystyle \frac{y^2-x^2}{x^2y^2}}{x+y} = \frac{y^2-x^2}{x^2y^2(x+y)}

    \displaystyle \phantom{\smash{\frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}}}{} = \frac{(y+x)(y-x)}{x^2y^2(x+y)} = \frac{y-x}{x^2y^2}


Exercises


Study advice

The basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that...

If you make a mistake somewhere the rest of the calculation will be wrong, so be careful!

Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step.

Do not expand unnecessarily. You later may be forced to factorise what you earlier expanded.


Reviews

Learn more about algebra in the English Wikipedia

Understanding Algebra - English text on the Web


Useful web sites