2.1 Algebraic expressions

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m
Current revision (11:28, 2 November 2010) (edit) (undo)
(MGN --> LCD)
 
(13 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Vald flik|[[2.1algebraic expressions|Theory]]}}
+
{{Selected tab|[[2.1 Algebraic expressions|Theory]]}}
-
{{Ej vald flik|[[2.1 Övningar|Exercises]]}}
+
{{Not selected tab|[[2.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Content:'''
+
'''Contents:'''
* Distributive law
* Distributive law
* Squaring rules
* Squaring rules
*Difference of two squares
*Difference of two squares
-
* Rational expression
+
* Rational expressions
}}
}}
Line 18: Line 18:
'''Learning outcomes:'''
'''Learning outcomes:'''
-
After this section, you will have learned how to:
+
After this section you will have learned how to:
-
*Simplify complex algebraic expression.
+
*Simplify complex algebraic expressions.
-
*Factorise expressions using squaring rules and and the difference of two squares rule.
+
*Factorise expressions with the use of squaring rules and the difference of two squares rule.
-
*Expand expressions using squaring rules and and the difference of two squares rule.
+
*Expand expressions with the use of squaring rules and the difference of two squares rule.
}}
}}
== Distributive Law ==
== Distributive Law ==
-
[[Bild:miniräknare_skämt.gif|right]]
 
The distributive law specifies how to multiply a bracketed expression by a factor.
The distributive law specifies how to multiply a bracketed expression by a factor.
-
<center>{{:2.1 - Figur - Distributiva lagen}}</center>
+
<center>{{:2.1 - Figure - The distributive law}}</center>
<div class="exempel">
<div class="exempel">
Line 47: Line 46:
</div>
</div>
-
Using the distributive law, we can also see how to tackle
+
Using the distributive law we can also see how to tackle
a minus sign in front of a bracketed expression.
a minus sign in front of a bracketed expression.
-
The rule says that bracket with a minus sign in front can be
+
The rule says that a minus sign infront of a bracket can be
-
eliminated if all the terms inside the brackets, switch signs.
+
eliminated if all the terms inside the brackets switch signs.
<div class="exempel">
<div class="exempel">
Line 68: Line 67:
</div>
</div>
-
If the distributive law is applied in reverse we say we “factor” the expression.
+
If the distributive law is applied in reverse we say we “factorise” the expression.
-
One often would like to to factorise out as large a numerical factor as possible.
+
One would often like to factorise out the largest possible numerical factor.
<div class="exempel">
<div class="exempel">
Line 85: Line 84:
== Squaring rules ==
== Squaring rules ==
-
The distributive law occasionally has to be used repeatedly to deal with larger expression.
+
On occasions the distributive law has to be used repeatedly to deal with larger expressions.
If we consider
If we consider
-
{{Fristående formel||<math>(a+b)(c+d)</math>}}
+
{{Displayed math||<math>(a+b)(c+d)</math>}}
-
and regard <math>a+b</math> as a factor that multiplies the bracketed expression(c+d) we get
+
and regard <math>a+b</math> as a factor that multiplies the bracketed expression <math>(c+d)</math> we get
-
{{Fristående formel||<math>\eqalign{
+
{{Displayed math||<math>\eqalign{
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
&= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
&= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
Line 101: Line 100:
Then the <math>c</math> and the <math>d</math> are multiplied into their respective brackets,
Then the <math>c</math> and the <math>d</math> are multiplied into their respective brackets,
-
{{Fristående formel||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}}
+
{{Displayed math||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}}
A mnemonic for this formula is:
A mnemonic for this formula is:
-
<center>{{:2.1 - Figur - Distributiva lagen två gånger}}</center>
+
<center>{{:2.1 - Figure - The distributive law twice}}</center>
<div class="exempel">
<div class="exempel">
Line 128: Line 127:
<div class="regel">
<div class="regel">
'''Squaring rules '''
'''Squaring rules '''
-
{{Fristående formel||<math>(a+b)^2 = a^2 +2ab + b^2</math>}}
+
{{Displayed math||<math>(a+b)^2 = a^2 +2ab + b^2</math>}}
-
{{Fristående formel||<math>(a-b)^2 = a^2 -2ab + b^2</math>}}
+
{{Displayed math||<math>(a-b)^2 = a^2 -2ab + b^2</math>}}
</div>
</div>
-
These formulas are called the first and second squaring rules
+
These formulas are called the first and second squaring rules.
<div class="exempel">
<div class="exempel">
Line 176: Line 175:
<div class="regel">
<div class="regel">
'''Difference of two squares:'''
'''Difference of two squares:'''
-
{{Fristående formel||<math>(a+b)(a-b) = a^2 -b^2</math>}}
+
{{Displayed math||<math>(a+b)(a-b) = a^2 -b^2</math>}}
</div>
</div>
This formula can be obtained directly by expanding the left hand side
This formula can be obtained directly by expanding the left hand side
-
{{Fristående formel||<math>(a+b)(a-b)
+
{{Displayed math||<math>(a+b)(a-b)
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
= a^2 -ab+ab-b^2
= a^2 -ab+ab-b^2
Line 207: Line 206:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math> \frac{a}{b} \cdot \frac{c}{d}
+
{{Displayed math||<math> \frac{a}{b} \cdot \frac{c}{d}
= \frac{a\cdot c}{b\cdot d}
= \frac{a\cdot c}{b\cdot d}
-
\quad \mbox{och} \quad
+
\quad \mbox{and} \quad
\frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
\frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
= \frac{a\cdot d}{b\cdot c} \; \mbox{.}</math>}}
= \frac{a\cdot d}{b\cdot c} \; \mbox{.}</math>}}
Line 230: Line 229:
A fractional expression can have its numerator and denominator multiplied by the same factor
A fractional expression can have its numerator and denominator multiplied by the same factor
-
{{Fristående formel||<math>\frac{x+2}{x+1}
+
{{Displayed math||<math>\frac{x+2}{x+1}
= \frac{(x+2)(x+3)}{(x+1)(x+3)}
= \frac{(x+2)(x+3)}{(x+1)(x+3)}
= \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
= \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
= \dots</math>}}
= \dots</math>}}
-
The opposite of this, is cancellation, where we delete factors that the numerator and denominator have in common
+
The opposite of this is cancellation. Here we delete factors that the numerator and denominator have in common
-
{{Fristående formel||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
+
{{Displayed math||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
= \frac{(x+2)(x+4)}{(x+1)(x+4)}
= \frac{(x+2)(x+4)}{(x+1)(x+4)}
= \frac{x+2}{x+1} \mbox{.}</math>}}
= \frac{x+2}{x+1} \mbox{.}</math>}}
Line 254: Line 253:
</div>
</div>
-
When fractional expressions are added or subtracted, they may need to be converted so that they have the same denominator before the numerators can be combined together,
+
When fractional expressions are added or subtracted they may need to be converted so that they have the same denominator. Only then can the numerators be combined together.
-
{{Fristående formel||<math>\frac{1}{x} - \frac{1}{x-1}
+
{{Displayed math||<math>\frac{1}{x} - \frac{1}{x-1}
= \frac{1}{x} \cdot \frac{x-1}{x-1} - \frac{1}{x-1} \cdot \frac{x}{x}
= \frac{1}{x} \cdot \frac{x-1}{x-1} - \frac{1}{x-1} \cdot \frac{x}{x}
= \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
= \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
Line 263: Line 262:
= \frac{-1}{x(x-1)} \; \mbox{.}</math>}}
= \frac{-1}{x(x-1)} \; \mbox{.}</math>}}
-
One normally tries to convert the fractions by multiplying the numerators and denominators by minimal factors to facilitate the calculations. The lowest common denominator (LCD) is the common denominator which contains the least number of factors.
+
One normally tries to convert the fractions by multiplying the numerators and denominators by minimal factors to facilitate the calculations. The lowest common denominator (LCD) is the common denominator which contains the least number of factors.
<div class="exempel">
<div class="exempel">
Line 272: Line 271:
= (x+1)(x+2)</math> <br><br>
= (x+1)(x+2)</math> <br><br>
Convert the first term using <math>(x+2)</math> and the second term using <math>(x+1)</math>
Convert the first term using <math>(x+2)</math> and the second term using <math>(x+1)</math>
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\frac{1}{x+1} + \frac{1}{x+2}
\frac{1}{x+1} + \frac{1}{x+2}
&= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
&= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
Line 281: Line 280:
= x^2</math><br><br>
= x^2</math><br><br>
We only need to convert the first term to get a common denominator
We only need to convert the first term to get a common denominator
-
{{Fristående formel||<math>\frac{1}{x} + \frac{1}{x^2}
+
{{Displayed math||<math>\frac{1}{x} + \frac{1}{x^2}
= \frac{x}{x^2} + \frac{1}{x^2}
= \frac{x}{x^2} + \frac{1}{x^2}
= \frac{x+1}{x^2}\,\mbox{.}</math>}}</li>
= \frac{x+1}{x^2}\,\mbox{.}</math>}}</li>
Line 287: Line 286:
\text{LCD}= x^2(x+1)^2(x+2)</math><br><br>
\text{LCD}= x^2(x+1)^2(x+2)</math><br><br>
The first term is converted using <math>x(x+2)</math> while the other term is converted using <math>(x+1)^2</math>
The first term is converted using <math>x(x+2)</math> while the other term is converted using <math>(x+1)^2</math>
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
&= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
&= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
Line 299: Line 298:
\text{LCD}=x(x-1)(x+1)</math><br><br>
\text{LCD}=x(x-1)(x+1)</math><br><br>
We must convert all the terms so that they have the common denominator <math>x(x-1)(x+1)</math>
We must convert all the terms so that they have the common denominator <math>x(x-1)(x+1)</math>
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\frac{x}{x+1} - \frac{1}{x(x-1)} -1
\frac{x}{x+1} - \frac{1}{x(x-1)} -1
&= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
&= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
Line 312: Line 311:
</div>
</div>
-
To simplify large expressions, it is often necessary to both cancel factors and multiply numerators and denominators by factors. As cancellation implies that we have performed factorisations, it is obvious we should try to keep expressions (such as the denominator) factorised and not expand something that we will later need to factorise.
+
To simplify large expressions it is often necessary to both cancel factors and multiply numerators and denominators by factors. As cancellation implies that we have performed factorisations it is obvious we should try to keep expressions (such as the denominator) factorised and not expand something that we will later need to factorise.
Line 321: Line 320:
<li><math>\frac{1}{x-2} - \frac{4}{x^2-4}
<li><math>\frac{1}{x-2} - \frac{4}{x^2-4}
= \frac{1}{x-2} - \frac{4}{(x+2)(x-2)}
= \frac{1}{x-2} - \frac{4}{(x+2)(x-2)}
-
= \left\{\,\mbox{MGN}
+
= \left\{\,\mbox{LCD}
= (x+2)(x-2)\,\right\}</math><br/><br/>
= (x+2)(x-2)\,\right\}</math><br/><br/>
<math>\phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{}
<math>\phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{}
Line 346: Line 345:
-
[[2.1 Övningar|Exercises]]
+
[[2.1 Exercises|Exercises]]
Line 358: Line 357:
-
'''Keep in mind that: '''
+
'''Keep in mind that...'''
-
Be careful. If you make a mistake somewhere the rest of the calculation will be wrong.
+
If you make a mistake somewhere the rest of the calculation will be wrong, so be careful!
Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step.
Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step.
Line 375: Line 374:
-
'''Länktips'''
+
'''Useful web sites'''
</div>
</div>

Current revision

       Theory          Exercises      

Contents:

  • Distributive law
  • Squaring rules
  • Difference of two squares
  • Rational expressions

Learning outcomes:

After this section you will have learned how to:

  • Simplify complex algebraic expressions.
  • Factorise expressions with the use of squaring rules and the difference of two squares rule.
  • Expand expressions with the use of squaring rules and the difference of two squares rule.

Distributive Law

The distributive law specifies how to multiply a bracketed expression by a factor.

[Image]

Example 1

  1. \displaystyle 4(x+y) = 4x + 4y
  2. \displaystyle 2(a-b) = 2a -2b
  3. \displaystyle x \left(\frac{1}{x} + \frac{1}{x^2} \right) = x\cdot \frac{1}{x} + x \cdot \frac{1}{x^2} = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} = 1 + \frac{1}{x}
  4. \displaystyle a(x+y+z) = ax + ay + az

Using the distributive law we can also see how to tackle a minus sign in front of a bracketed expression. The rule says that a minus sign infront of a bracket can be eliminated if all the terms inside the brackets switch signs.

Example 2

  1. \displaystyle -(x+y) = (-1) \cdot (x+y) = (-1)x + (-1)y = -x-y
  2. \displaystyle -(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x = -x^2 +x
    where we have in the final step used \displaystyle -(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.}
  3. \displaystyle -(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x + (-1) \cdot y -(-1)\cdot y^3
    \displaystyle \phantom{-(x+y-y^3)}{} = -x-y+y^3
  4. \displaystyle x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2
    \displaystyle \phantom{x^2-2x-(3x+2)}{} = x^2 -5x -2

If the distributive law is applied in reverse we say we “factorise” the expression. One would often like to factorise out the largest possible numerical factor.

Example 3

  1. \displaystyle 3x +9y = 3x + 3\cdot 3y = 3(x+3y)
  2. \displaystyle xy + y^2 = xy + y\cdot y = y(x+y)
  3. \displaystyle 2x^2 -4x = 2x\cdot x - 2\cdot 2\cdot x = 2x(x-2)
  4. \displaystyle \frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1


Squaring rules

On occasions the distributive law has to be used repeatedly to deal with larger expressions. If we consider

\displaystyle (a+b)(c+d)

and regard \displaystyle a+b as a factor that multiplies the bracketed expression \displaystyle (c+d) we get

\displaystyle \eqalign{
 \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
   &= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
      + \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,d\mbox{,}\cr
 (a+b)\,(c+d)
   &= (a+b)\,c + (a+b)\,d\mbox{.}}

Then the \displaystyle c and the \displaystyle d are multiplied into their respective brackets,

\displaystyle (a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}

A mnemonic for this formula is:

[Image]

Example 4

  1. \displaystyle (x+1)(x-2) = x\cdot x + x \cdot (-2) + 1 \cdot x + 1 \cdot (-2) = x^2 -2x+x-2
    \displaystyle \phantom{(x+1)(x-2)}{}=x^2 -x-2
  2. \displaystyle 3(x-y)(2x+1) = 3(x\cdot 2x + x\cdot 1 - y \cdot 2x - y \cdot 1) = 3(2x^2 +x-2xy-y)
    \displaystyle \phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y
  3. \displaystyle (1-x)(2-x) = 1\cdot 2 + 1 \cdot (-x) -x\cdot 2 - x\cdot (-x) = 2-x-2x+x^2
    \displaystyle \phantom{(1-x)(2-x)}{}=2-3x+x^2 where we have used \displaystyle -x\cdot (-x) = (-1)x \cdot (-1)x = (-1)^2 x^2 = 1\cdot x^2 = x^2.

Two important special cases of the above formula are when \displaystyle a+b and \displaystyle c+d are the same expression

Squaring rules

\displaystyle (a+b)^2 = a^2 +2ab + b^2
\displaystyle (a-b)^2 = a^2 -2ab + b^2

These formulas are called the first and second squaring rules.

Example 5

  1. \displaystyle (x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4
  2. \displaystyle (-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9
    where \displaystyle (-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \cdot x^2 = x^2\,\mbox{.}
  3. \displaystyle (x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2 = x^4 -8x^2 +16
  4. \displaystyle (x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)
    \displaystyle \phantom{(x+1)^2-(x-1)^2}{}= x^2 +2x +1 -x^2 + 2x-1
    \displaystyle \phantom{(x+1)^2-(x-1)^2}{} = 2x+2x = 4x
  5. \displaystyle (2x+4)(x+2) = 2(x+2)(x+2) = 2(x+2)^2 = 2(x^2 + 4x+ 4)
    \displaystyle \phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8
  6. \displaystyle (x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)
    \displaystyle \phantom{(x-2)^3}{}=x \cdot x^2 + x\cdot (-4x) + x\cdot 4 - 2\cdot x^2 - 2 \cdot (-4x)-2 \cdot 4
    \displaystyle \phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 = x^3-6x^2 + 12x -8

The squaring rules are also used in the reverse direction to factorise expressions.

Example 6

  1. \displaystyle x^2 + 2x+ 1 = (x+1)^2
  2. \displaystyle x^6-4x^3 +4 = (x^3)^2 - 2\cdot 2x^3 +2^2 = (x^3-2)^2
  3. \displaystyle x^2 +x + \frac{1}{4} = x^2 + 2\cdot\frac{1}{2}x + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2


Difference of two squares

A third special case of the first formula in the last section is the difference of two squares rule.

Difference of two squares:

\displaystyle (a+b)(a-b) = a^2 -b^2

This formula can be obtained directly by expanding the left hand side

\displaystyle (a+b)(a-b)
 = a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
 = a^2 -ab+ab-b^2
 = a^2 -b^2\mbox{.}

Example 7

  1. \displaystyle (x-4y)(x+4y) = x^2 -(4y)^2 = x^2 -16y^2
  2. \displaystyle (x^2+2x)(x^2-2x)= (x^2)^2 - (2x)^2 = x^4 -4x^2
  3. \displaystyle (y+3)(3-y)= (3+y)(3-y) = 3^2 -y^2 = 9-y^2
  4. \displaystyle x^4 -16 = (x^2)^2 -4^2 = (x^2+4)(x^2-4) = (x^2+4)(x^2-2^2)
    \displaystyle \phantom{x^4-16}{}=(x^2+4)(x+2)(x-2)


Rational expressions

Calculations of fractions containing algebraic expressions are largely similar to ordinary calculations with fractions.

Multiplication and division of fractions containing algebraic expressions follow the same rules that apply to ordinary fractions,

\displaystyle \frac{a}{b} \cdot \frac{c}{d}
 = \frac{a\cdot c}{b\cdot d}
 \quad \mbox{and} \quad
 \frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
 = \frac{a\cdot d}{b\cdot c} \; \mbox{.}

Example 8

  1. \displaystyle \frac{3x}{x-y} \cdot \frac{4x}{2x+y} = \frac{3x\cdot 4x}{(x-y)\cdot(2x+y)} = \frac{12x^2}{(x-y)(2x+y)}
  2. \displaystyle \frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} = \frac{a^2}{x(x+1)}
  3. \displaystyle \frac{\displaystyle \frac{x}{(x+1)^2}}{\displaystyle \frac{x-2}{x-1}} = \frac{x(x-1)}{(x-2)(x+1)^2}

A fractional expression can have its numerator and denominator multiplied by the same factor

\displaystyle \frac{x+2}{x+1}
 = \frac{(x+2)(x+3)}{(x+1)(x+3)}
 = \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
 = \dots

The opposite of this is cancellation. Here we delete factors that the numerator and denominator have in common

\displaystyle \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
 = \frac{(x+2)(x+4)}{(x+1)(x+4)}
 = \frac{x+2}{x+1} \mbox{.}

Example 9

  1. \displaystyle \frac{x}{x+1} = \frac{x}{x+1} \cdot \frac{x+2}{x+2} = \frac{x(x+2)}{(x+1)(x+2)}
  2. \displaystyle \frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}
  3. \displaystyle \frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} = \left\{\,\text{Difference of two squares}\,\right\} = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} = \frac{x-y}{x+2}

When fractional expressions are added or subtracted they may need to be converted so that they have the same denominator. Only then can the numerators be combined together.


\displaystyle \frac{1}{x} - \frac{1}{x-1}
 = \frac{1}{x} \cdot \frac{x-1}{x-1} - \frac{1}{x-1} \cdot \frac{x}{x}
 = \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
 = \frac{x-1-x}{x(x-1)}
 = \frac{-1}{x(x-1)} \; \mbox{.}

One normally tries to convert the fractions by multiplying the numerators and denominators by minimal factors to facilitate the calculations. The lowest common denominator (LCD) is the common denominator which contains the least number of factors.

Example 10

  1. \displaystyle \frac{1}{x+1} + \frac{1}{x+2}\quad has \displaystyle \ \text{LCD} = (x+1)(x+2)

    Convert the first term using \displaystyle (x+2) and the second term using \displaystyle (x+1)
    \displaystyle \begin{align*}
       \frac{1}{x+1} + \frac{1}{x+2}
         &= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
         &= \frac{x+2+x+1}{(x+1)(x+2)}
          = \frac{2x+3}{(x+1)(x+2)}\:\mbox{.}
       \end{align*}
    
  2. \displaystyle \frac{1}{x} + \frac{1}{x^2}\quad has \displaystyle \ \text{LCD} = x^2

    We only need to convert the first term to get a common denominator
    \displaystyle \frac{1}{x} + \frac{1}{x^2}
       = \frac{x}{x^2} + \frac{1}{x^2}
       = \frac{x+1}{x^2}\,\mbox{.}
    
  3. \displaystyle \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad has \displaystyle \ \text{LCD}= x^2(x+1)^2(x+2)

    The first term is converted using \displaystyle x(x+2) while the other term is converted using \displaystyle (x+1)^2
    \displaystyle \begin{align*}
       \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
         &= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
            - \frac{(x+1)^2}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x}{x^2(x+1)^2(x+2)} - \frac{x^2+2x+1}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x-(x^2+2x+1)}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x-x^2-2x-1}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.}
       \end{align*}
    
  4. \displaystyle \frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad has \displaystyle \ \text{LCD}=x(x-1)(x+1)

    We must convert all the terms so that they have the common denominator \displaystyle x(x-1)(x+1)
    \displaystyle \begin{align*}
       \frac{x}{x+1} - \frac{1}{x(x-1)} -1
         &= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
            - \frac{x(x-1)(x+1)}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
            - \frac{x^3 -x}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2 -(x+1) -(x^3-x)}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2 -x-1 -x^3+x}{x(x-1)(x+1)}\\[4pt]
         &= \frac{-x^2-1}{x(x-1)(x+1)}\,\mbox{.}
       \end{align*}
    

To simplify large expressions it is often necessary to both cancel factors and multiply numerators and denominators by factors. As cancellation implies that we have performed factorisations it is obvious we should try to keep expressions (such as the denominator) factorised and not expand something that we will later need to factorise.


Example 11

  1. \displaystyle \frac{1}{x-2} - \frac{4}{x^2-4} = \frac{1}{x-2} - \frac{4}{(x+2)(x-2)} = \left\{\,\mbox{LCD} = (x+2)(x-2)\,\right\}

    \displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2}{(x+2)(x-2)} - \frac{4}{(x+2)(x-2)}

    \displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2 -4}{(x+2)(x-2)} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2}
  2. \displaystyle \frac{x + \displaystyle \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2}{x} + \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2+1}{x}}{x^2+1} = \frac{x^2+1}{x(x^2+1)} = \frac{1}{x}
  3. \displaystyle \frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y} = \frac{\displaystyle \frac{y^2}{x^2y^2} - \frac{x^2}{x^2y^2}}{x+y} = \frac{\displaystyle \frac{y^2-x^2}{x^2y^2}}{x+y} = \frac{y^2-x^2}{x^2y^2(x+y)}

    \displaystyle \phantom{\smash{\frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}}}{} = \frac{(y+x)(y-x)}{x^2y^2(x+y)} = \frac{y-x}{x^2y^2}


Exercises


Study advice

The basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that...

If you make a mistake somewhere the rest of the calculation will be wrong, so be careful!

Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step.

Do not expand unnecessarily. You later may be forced to factorise what you earlier expanded.


Reviews

Learn more about algebra in the English Wikipedia

Understanding Algebra - English text on the Web


Useful web sites