1.2 Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: __NOTOC__ ===Övning 1.2:1=== <div class="ovning"> Skriv på gemensamt bråkstreck {| width="100%" cellspacing="10px" |a) |width="33%" | <math>\displaystyle \frac{7}{4}+\frac{11}{7}</math>...) |
|||
(20 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
+ | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
+ | | style="border-bottom:1px solid #000" width="5px" | | ||
+ | {{Not selected tab|[[1.2 Fractional arithmetic|Theory]]}} | ||
+ | {{Selected tab|[[1.2 Exercises|Exercises]]}} | ||
+ | | style="border-bottom:1px solid #000" width="100%"| | ||
+ | |} | ||
+ | |||
- | === | + | ===Exercise 1.2:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Express as a single fraction | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
|width="33%" | <math>\displaystyle \frac{7}{4}+\frac{11}{7}</math> | |width="33%" | <math>\displaystyle \frac{7}{4}+\frac{11}{7}</math> | ||
|b) | |b) | ||
- | |width="33%" | <math>\displaystyle \frac{2}{7}-\frac{1}{5</math> | + | |width="33%" | <math>\displaystyle \frac{2}{7}-\frac{1}{5}</math> |
|c) | |c) | ||
- | |width="33%" | <math>\displaystyle \frac{ | + | |width="33%" | <math>\displaystyle \frac{1}{6}-\frac{2}{5}</math> |
|- | |- | ||
|d) | |d) | ||
- | || \displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5}</math> | + | || <math>\displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5}</math> |
|e) | |e) | ||
- | || \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math> | + | ||<math> \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math> |
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:1|Solution a|Solution 1.2:1a|Solution b|Solution 1.2:1b|Solution c|Solution 1.2:1c|Solution d|Solution 1.2:1d|Solution e|Solution 1.2:1e}} |
- | === | + | ===Exercise 1.2:2=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine the lowest common denominator of | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 32: | Line 39: | ||
|| <math>\displaystyle \frac{1}{12}-\frac{1}{14}</math> | || <math>\displaystyle \frac{1}{12}-\frac{1}{14}</math> | ||
|d) | |d) | ||
- | || \displaystyle \frac{2}{45}+\frac{1}{75}</math> | + | || <math>\displaystyle \frac{2}{45}+\frac{1}{75}</math> |
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:2|Solution a|Solution 1.2:2a|Solution b|Solution 1.2:2b|Solution c|Solution 1.2:2c|Solution d|Solution 1.2:2d}} |
- | === | + | ===Exercise 1.2:3=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Calculate the following by using the lowest common denominator. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 46: | Line 53: | ||
|width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math> | |width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:3|Solution a|Solution 1.2:3a|Solution b|Solution 1.2:3b}} |
- | === | + | ===Exercise 1.2:4=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Simplify the following by writing each part as one fraction. The fraction should be in the simplest possible form. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10 | + | |width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10}}</math> |
|b) | |b) | ||
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}}</math> | |width="33%"| <math>\displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}}</math> | ||
Line 60: | Line 67: | ||
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math> | |width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:4|Solution a|Solution 1.2:4a|Solution b|Solution 1.2:4b|Solution c|Solution 1.2:4c}} |
- | === | + | ===Exercise 1.2:5=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Simplify the following by writing each part as one fraction. The fraction should be in the simplest possible form. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
|width="33%"| <math>\displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}}</math> | |width="33%"| <math>\displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}}</math> | ||
|b) | |b) | ||
- | |width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2 | + | |width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2}}</math> |
|c) | |c) | ||
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math> | |width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:5|Solution a|Solution 1.2:5a|Solution b|Solution 1.2:5b|Solution c|Solution 1.2:5c}} |
- | === | + | ===Exercise 1.2:6=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Simplify | |
- | + | <math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math> | |
- | + | </div>{{#NAVCONTENT:Answer|Answer 1.2:6|Solution |Solution 1.2:6}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | </div>{{#NAVCONTENT: | + |
Current revision
Theory | Exercises |
Exercise 1.2:1
Express as a single fraction
a) | \displaystyle \displaystyle \frac{7}{4}+\frac{11}{7} | b) | \displaystyle \displaystyle \frac{2}{7}-\frac{1}{5} | c) | \displaystyle \displaystyle \frac{1}{6}-\frac{2}{5} |
d) | \displaystyle \displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5} | e) | \displaystyle \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3} |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Exercise 1.2:2
Determine the lowest common denominator of
a) | \displaystyle \displaystyle \frac{1}{6}+\frac{1}{10} | b) | \displaystyle \displaystyle \frac{1}{4}-\frac{1}{8} |
c) | \displaystyle \displaystyle \frac{1}{12}-\frac{1}{14} | d) | \displaystyle \displaystyle \frac{2}{45}+\frac{1}{75} |
Answer
Solution a
Solution b
Solution c
Solution d
Exercise 1.2:3
Calculate the following by using the lowest common denominator.
a) | \displaystyle \displaystyle\frac{3}{20}+\frac{7}{50}-\frac{1}{10} | b) | \displaystyle \displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16} |
Exercise 1.2:4
Simplify the following by writing each part as one fraction. The fraction should be in the simplest possible form.
a) | \displaystyle \displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10}} | b) | \displaystyle \displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}} | c) | \displaystyle \displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}} |
Answer
Solution a
Solution b
Solution c
Exercise 1.2:5
Simplify the following by writing each part as one fraction. The fraction should be in the simplest possible form.
a) | \displaystyle \displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}} | b) | \displaystyle \displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2}} | c) | \displaystyle \displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}} |
Answer
Solution a
Solution b
Solution c
Exercise 1.2:6
Simplify \displaystyle \ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}
Answer
Solution