1.2 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Ny sida: __NOTOC__ ===Övning 1.2:1=== <div class="ovning"> Skriv på gemensamt bråkstreck {| width="100%" cellspacing="10px" |a) |width="33%" | <math>\displaystyle \frac{7}{4}+\frac{11}{7}</math>...)
Current revision (11:49, 22 October 2008) (edit) (undo)
 
(20 intermediate revisions not shown.)
Line 1: Line 1:
__NOTOC__
__NOTOC__
 +
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 +
| style="border-bottom:1px solid #000" width="5px" | &nbsp;
 +
{{Not selected tab|[[1.2 Fractional arithmetic|Theory]]}}
 +
{{Selected tab|[[1.2 Exercises|Exercises]]}}
 +
| style="border-bottom:1px solid #000" width="100%"| &nbsp;
 +
|}
 +
-
===Övning 1.2:1===
+
===Exercise 1.2:1===
<div class="ovning">
<div class="ovning">
-
Skriv på gemensamt bråkstreck
+
Express as a single fraction
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
|width="33%" | <math>\displaystyle \frac{7}{4}+\frac{11}{7}</math>
|width="33%" | <math>\displaystyle \frac{7}{4}+\frac{11}{7}</math>
|b)
|b)
-
|width="33%" | <math>\displaystyle \frac{2}{7}-\frac{1}{5</math>
+
|width="33%" | <math>\displaystyle \frac{2}{7}-\frac{1}{5}</math>
|c)
|c)
-
|width="33%" | <math>\displaystyle \frac{2}{7}-\frac{1}{5}</math>
+
|width="33%" | <math>\displaystyle \frac{1}{6}-\frac{2}{5}</math>
|-
|-
|d)
|d)
-
|| \displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5}</math>
+
|| <math>\displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5}</math>
|e)
|e)
-
|| \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math>
+
||<math> \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:1|Lösning a|Lösning 1.2:1a|Lösning b|Lösning 1.2:1b|Lösning c|Lösning 1.2:1c|Lösning d|Lösning 1.2:1d|Lösning e|Lösning 1.2:1e}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:1|Solution a|Solution 1.2:1a|Solution b|Solution 1.2:1b|Solution c|Solution 1.2:1c|Solution d|Solution 1.2:1d|Solution e|Solution 1.2:1e}}
-
===Övning 1.2:2===
+
===Exercise 1.2:2===
<div class="ovning">
<div class="ovning">
-
Bestäm minsta gemensamma nämnare
+
Determine the lowest common denominator of
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 32: Line 39:
|| <math>\displaystyle \frac{1}{12}-\frac{1}{14}</math>
|| <math>\displaystyle \frac{1}{12}-\frac{1}{14}</math>
|d)
|d)
-
|| \displaystyle \frac{2}{45}+\frac{1}{75}</math>
+
|| <math>\displaystyle \frac{2}{45}+\frac{1}{75}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:2|Lösning a|Lösning 1.2:2a|Lösning b|Lösning 1.2:2b|Lösning c|Lösning 1.2:2c|Lösning d|Lösning 1.2:2d}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:2|Solution a|Solution 1.2:2a|Solution b|Solution 1.2:2b|Solution c|Solution 1.2:2c|Solution d|Solution 1.2:2d}}
-
===Övning 1.1:3===
+
===Exercise 1.2:3===
<div class="ovning">
<div class="ovning">
-
Beräkna följande uttryck genom att använda minsta gemensamma nämnare:
+
Calculate the following by using the lowest common denominator.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 46: Line 53:
|width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math>
|width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:3|Lösning a|Lösning 1.2:3a|Lösning b|Lösning 1.2:3b}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:3|Solution a|Solution 1.2:3a|Solution b|Solution 1.2:3b}}
-
===Övning 1.1:4===
+
===Exercise 1.2:4===
<div class="ovning">
<div class="ovning">
-
F&ouml;renkla f&ouml;ljande uttryck genom att skriva p&aring; gemensamt br&aring;kstreck. Br&aring;ket ska vara f&auml;rdigf&ouml;rkortat.
+
Simplify the following by writing each part as one fraction. The fraction should be in the simplest possible form.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10}}}</math>
+
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10}}</math>
|b)
|b)
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}}</math>
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}}</math>
Line 60: Line 67:
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math>
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:4|Lösning a|Lösning 1.2:4a|Lösning b|Lösning 1.2:4b|Lösning c|Lösning 1.2:4c}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:4|Solution a|Solution 1.2:4a|Solution b|Solution 1.2:4b|Solution c|Solution 1.2:4c}}
-
===Övning 1.1:5===
+
===Exercise 1.2:5===
<div class="ovning">
<div class="ovning">
-
F&ouml;renkla f&ouml;ljande uttryck genom att skriva p&aring; gemensamt br&aring;kstreck. Br&aring;ket ska vara f&auml;rdigf&ouml;rkortat.
+
Simplify the following by writing each part as one fraction. The fraction should be in the simplest possible form.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
|width="33%"| <math>\displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}}</math>
|width="33%"| <math>\displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}}</math>
|b)
|b)
-
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2}}}</math>
+
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2}}</math>
|c)
|c)
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math>
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:5|Lösning a|Lösning 1.2:5a|Lösning b|Lösning 1.2:5b|Lösning c|Lösning 1.2:5c}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:5|Solution a|Solution 1.2:5a|Solution b|Solution 1.2:5b|Solution c|Solution 1.2:5c}}
-
===Övning 1.1:6===
+
===Exercise 1.2:6===
<div class="ovning">
<div class="ovning">
-
F&ouml;renkla <math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math>
+
Simplify
-
Ange decimalutvecklingen med tre korrekta decimaler till
+
<math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math>
-
{| width="100%" cellspacing="10px"
+
</div>{{#NAVCONTENT:Answer|Answer 1.2:6|Solution |Solution 1.2:6}}
-
|a)
+
-
|width="25%"| <math>\frac{7}{6}</math>
+
-
|b)
+
-
|width="25%"| <math>\frac{9}{4}</math>
+
-
|c)
+
-
|width="25%"| <math>\frac{2}{7}</math>
+
-
|d)
+
-
|width="25%"| <math>\sqrt{2}</math>
+
-
|}
+
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:6|Lösning |Lösning 1.2:6}}
+

Current revision

       Theory          Exercises      


Exercise 1.2:1

Express as a single fraction

a) \displaystyle \displaystyle \frac{7}{4}+\frac{11}{7} b) \displaystyle \displaystyle \frac{2}{7}-\frac{1}{5} c) \displaystyle \displaystyle \frac{1}{6}-\frac{2}{5}
d) \displaystyle \displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5} e) \displaystyle \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}


Exercise 1.2:2

Determine the lowest common denominator of

a) \displaystyle \displaystyle \frac{1}{6}+\frac{1}{10} b) \displaystyle \displaystyle \frac{1}{4}-\frac{1}{8}
c) \displaystyle \displaystyle \frac{1}{12}-\frac{1}{14} d) \displaystyle \displaystyle \frac{2}{45}+\frac{1}{75}


Exercise 1.2:3

Calculate the following by using the lowest common denominator.

a) \displaystyle \displaystyle\frac{3}{20}+\frac{7}{50}-\frac{1}{10} b) \displaystyle \displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}


Exercise 1.2:4

Simplify the following by writing each part as one fraction. The fraction should be in the simplest possible form.

a) \displaystyle \displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10}} b) \displaystyle \displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}} c) \displaystyle \displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}


Exercise 1.2:5

Simplify the following by writing each part as one fraction. The fraction should be in the simplest possible form.

a) \displaystyle \displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}} b) \displaystyle \displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2}} c) \displaystyle \displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}


Exercise 1.2:6

Simplify \displaystyle \ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}