Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 2.1:2a

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (08:10, 23 September 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
 
-
<center> [[Bild:2_1_2a.gif]] </center>
 
First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket,
First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket,
-
<math>
+
{{Displayed math||<math>\begin{align}
-
\qquad
+
-
\begin{align}
+
(x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\
(x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\
&= x^2-5x-4x+20-(6x^2-9x)\\
&= x^2-5x-4x+20-(6x^2-9x)\\
-
&=x^2-5x-4x+20-6x^2+9x
+
&=x^2-5x-4x+20-6x^2+9x\,\textrm{.}
-
\end{align}
+
\end{align}</math>}}
-
</math>
+
-
Then, gather together <math>x^2-, \, x- </math> and the constant terms and simplify
+
Then, gather together ''x''²-, ''x''- and the constant terms and simplify
-
<math>
+
{{Displayed math||<math>\begin{align}
-
\qquad
+
-
\begin{align}
+
\phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\
\phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\
&= -5x^2+0+20\\
&= -5x^2+0+20\\
-
&= -5x^2+20
+
&= \rlap{-5x^2+20\,\textrm{.}}\phantom{x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)}
-
\end{align}
+
\end{align}</math>}}
-
</math>
+
-
 
+
-
{{NAVCONTENT_STOP}}
+

Current revision

First, multiply the brackets together. In the first product, every term in the first bracket is multiplied by every term in the second bracket,

(x4)(x5)3x(2x3)=xxx54x4(5)(3x2x3x3)=x25x4x+20(6x29x)=x25x4x+206x2+9x.

Then, gather together x²-, x- and the constant terms and simplify

=(x26x2)+(5x4x+9x)+20=5x2+0+20=5x2+20.