1.3 Powers
From Förberedande kurs i matematik 1
m (Robot: Automated text replacement (-Övningar +Exercises)) |
|||
(6 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{ | + | {{Selected tab|[[1.3 Powers|Theory]]}} |
- | {{ | + | {{Not selected tab|[[1.3 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
Line 18: | Line 18: | ||
'''Learning outcomes:''' | '''Learning outcomes:''' | ||
- | After this section | + | After this section you will have learned to: |
* Recognise the concepts of base and exponent. | * Recognise the concepts of base and exponent. | ||
- | *Calculate integer power expressions | + | *Calculate integer power expressions. |
*Use the laws of exponents to simplify expressions containing powers. | *Use the laws of exponents to simplify expressions containing powers. | ||
* Know when the laws of exponents are applicable (positive basis). | * Know when the laws of exponents are applicable (positive basis). | ||
Line 29: | Line 29: | ||
== Integer exponents == | == Integer exponents == | ||
- | We use the multiplication symbol as a | + | We use the multiplication symbol as a shorthand for repeated addition of the same number. For example: |
- | {{ | + | {{Displayed math||<math>4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}</math>}} |
In a similar way we use exponentials as a short-hand for repeated multiplication | In a similar way we use exponentials as a short-hand for repeated multiplication | ||
of the same number: | of the same number: | ||
- | {{ | + | {{Displayed math||<math> 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}</math>}} |
- | The 4 is called the base of the power | + | The 4 is called the base of the power and the 5 is its exponent. |
<div class="exempel"> | <div class="exempel"> | ||
Line 49: | Line 49: | ||
= 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100 000</math></li> | = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100 000</math></li> | ||
<li><math>0{,}1^3 | <li><math>0{,}1^3 | ||
- | = 0{ | + | = 0\text{.}1 \cdot 0\text{.}1 \cdot 0\text{.}1 = 0\text{.}001</math></li> |
<li><math>(-2)^4 | <li><math>(-2)^4 | ||
= (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, but <math> -2^4 | = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, but <math> -2^4 | ||
Line 79: | Line 79: | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.}</math>}} |
</div> | </div> | ||
Line 85: | Line 85: | ||
== Laws of exponents == | == Laws of exponents == | ||
- | There are a few more rules | + | There are a few more rules that lead on from the definition of power which are useful when performing calculations. You can see for example that |
- | {{ | + | {{Displayed math||<math>2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8\text{,}</math>}} |
which generally can be expressed as | which generally can be expressed as | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^m \cdot a^n = a^{m+n}\mbox{.}</math>}} |
</div> | </div> | ||
- | There is also a useful simplification rule for division of powers | + | There is also a useful simplification rule for the division of powers that have the same base. |
- | {{ | + | {{Displayed math||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}} |
The general rule is | The general rule is | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>\displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}</math>}} |
</div> | </div> | ||
- | For the case when the base itself is a power | + | For the case when the base itself is a power there is another useful rule. We see that |
- | {{ | + | {{Displayed math||<math> (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \cdot 3} = 5^6\mbox{}</math>}} |
and | and | ||
- | {{ | + | {{Displayed math||<math> (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\cdot2}=5^6\mbox{.}</math>}} |
Generally, this can be written | Generally, this can be written | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>(a^m)^n = a^{m \cdot n}\mbox{.} </math>}} |
</div> | </div> | ||
Line 143: | Line 143: | ||
- | If a fraction has the same expression for the exponent | + | If a fraction has the same expression for the exponent in both the numerator and the denominator we can simplify in two ways: |
- | {{ | + | {{Displayed math||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.}</math>}} |
The only way for the rules of exponents to agree is to make the | The only way for the rules of exponents to agree is to make the | ||
- | following | + | following natural definition. For all non zero ''a'' we have |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math> a^0 = 1\mbox{.} </math>}} |
</div> | </div> | ||
- | We can also run into examples where the exponent in the denominator is greater than that in the numerator. | + | We can also run into examples where the exponent in the denominator is greater than that in the numerator. For example we have |
- | {{ | + | {{Displayed math||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.}</math>}} |
- | + | It is therefore necessary that we assume the negative sign of the exponent implies that | |
- | {{ | + | {{Displayed math||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}} |
- | + | We therefore note that the general definition for negative exponents is that for all non zero numbers ''a'', we have | |
- | + | of as follows | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}} |
</div> | </div> | ||
Line 190: | Line 190: | ||
</div> | </div> | ||
- | If the base of a power is <math>-1</math> then the expression will simplify to either <math>-1</math> or <math>+1</math> depending on the value of the | + | If the base of a power is <math>-1</math> then the expression will simplify to either <math>-1</math> or <math>+1</math> depending on the value of the exponent |
- | {{ | + | {{Displayed math||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}}</math>}} |
- | The rule is that <math>(-1)^n </math> is equal to<math>-1</math> | + | The rule is that <math>(-1)^n </math> is equal to <math>-1</math> |
if <math>n</math> is odd and equal to <math>+1</math> if <math>n</math> is even . | if <math>n</math> is odd and equal to <math>+1</math> if <math>n</math> is even . | ||
Line 215: | Line 215: | ||
==Changing the base == | ==Changing the base == | ||
- | A point to observe is that when simplifying expressions try | + | A point to observe is that when simplifying expressions one should try if possible to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base. It is therefore a good idea to learn to recognise the powers of these numbers, such as: |
- | {{ | + | {{Displayed math||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}} |
- | {{ | + | {{Displayed math||<math>9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots</math>}} |
- | {{ | + | {{Displayed math||<math>25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots</math>}} |
- | + | Similarly, one should become familiar with | |
- | {{ | + | {{Displayed math||<math>\frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots</math>}} |
- | {{ | + | {{Displayed math||<math>\frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots</math>}} |
- | {{ | + | {{Displayed math||<math>\frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots</math>}} |
and so on. | and so on. | ||
Line 260: | Line 260: | ||
== Rational exponents == | == Rational exponents == | ||
- | What happens if a number is raised to a rational exponent? Do the definitions and the rules we have used above | + | What happens if a number is raised to a rational exponent? Do the definitions and the rules we have used in the above calculations still hold? |
- | For instance | + | For instance we note that |
- | {{ | + | {{Displayed math||<math>2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2</math>}} |
- | so <math> 2^{1/2} </math> must be the same as <math>\sqrt{2}</math> because <math>\sqrt2</math> is defined as the number which satisfies <math>\sqrt2\cdot\sqrt2 = 2</math> . | + | so <math> 2^{1/2} </math> must be the same as <math>\sqrt{2}</math>. This is because <math>\sqrt2</math> is defined as the number which satisfies <math>\sqrt2\cdot\sqrt2 = 2</math> . |
Generally, we define | Generally, we define | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^{1/2} = \sqrt{a}\mbox{.}</math>}} |
</div> | </div> | ||
- | We must assume that <math>a\ge 0</math> | + | We must assume that <math>a\ge 0</math> since no real number multiplied by itself can give a negative number. |
We also see that, for example, | We also see that, for example, | ||
- | {{ | + | {{Displayed math||<math>5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}} |
- | which | + | which implies that <math>\,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,</math>. This can be generalised to |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.}</math>}} |
</div> | </div> | ||
- | By combining this definition with one of | + | By combining this definition with one of our previous laws for exponents, namely <math>((a^m)^n=a^{m\cdot n})</math>, we have that for all <math>a\ge0</math>, the following holds: |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}</math>}} |
- | or | + | or alternatively |
- | {{ | + | {{Displayed math||<math>a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} </math>}} |
</div> | </div> | ||
Line 316: | Line 316: | ||
If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents. | If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents. | ||
- | If the base of a power is greater than <math>1</math> then the power | + | If the base of a power is greater than <math>1</math> then the power increases as the exponent increases. On the other hand, if the base lies between <math>0</math> and <math>1</math> then the power decreases as the exponent grows. |
<div class="exempel"> | <div class="exempel"> | ||
Line 322: | Line 322: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> | + | <li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> because the base <math>3</math> is greater than <math>1</math> and the first exponent <math>5/6</math> is greater than the second exponent <math>3/4</math>.</li> |
<li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> as the base is greater than <math>1</math> and the exponents satisfy <math> -3/4 > - 5/6</math>.</li> | <li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> as the base is greater than <math>1</math> and the exponents satisfy <math> -3/4 > - 5/6</math>.</li> | ||
- | <li><math> \quad 0{ | + | <li><math> \quad 0\text{.}3^5 < 0\text{.}3^4 \quad</math>as the base <math> 0\text{.}3</math> is between <math>0</math> and <math>1</math> and <math>5 > 4</math>. |
</ol> | </ol> | ||
</div> | </div> | ||
- | If a power has a positive exponent | + | If a power has a positive exponent it increases as the base increases. The opposite applies if the exponent is negative, that is to say the power decreases as the base increases. |
<div class="exempel"> | <div class="exempel"> | ||
Line 339: | Line 339: | ||
</div> | </div> | ||
- | Sometimes powers | + | Sometimes powers need to be rewritten in order to determine the relative sizes. For example to compare <math>125^2</math> with <math>36^3</math> we can rewrite them as |
- | {{ | + | {{Displayed math||<math> |
125^2 = (5^3)^2 = 5^6\quad \text{and}\quad 36^3 = (6^2)^3 = 6^6 | 125^2 = (5^3)^2 = 5^6\quad \text{and}\quad 36^3 = (6^2)^3 = 6^6 | ||
</math>}} | </math>}} | ||
- | after which | + | after which we see that <math>36^3 > 125^2</math>. |
<div class="exempel"> | <div class="exempel"> | ||
''' Example 11''' | ''' Example 11''' | ||
- | Determine which of the following pairs of numbers is the greater | + | Determine which of the following pairs of numbers is the greater: |
<ol type="a"> | <ol type="a"> | ||
Line 357: | Line 357: | ||
The base 25 can be rewritten in terms of the second base <math>5</math> by putting <math>25= 5\cdot 5= 5^2</math>. Therefore | The base 25 can be rewritten in terms of the second base <math>5</math> by putting <math>25= 5\cdot 5= 5^2</math>. Therefore | ||
- | {{ | + | {{Displayed math||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}\text{,}</math>}} |
- | + | hence we see that | |
- | {{ | + | {{Displayed math||<math>5^{3/4} > 25^{1/3} </math>}} |
since <math>\frac{3}{4} > \frac{2}{3}</math> and the base <math>5</math> is larger than <math>1</math>.</li> | since <math>\frac{3}{4} > \frac{2}{3}</math> and the base <math>5</math> is larger than <math>1</math>.</li> | ||
Line 370: | Line 370: | ||
Both <math>8</math> and <math>128</math> can be written as powers of <math>2</math> | Both <math>8</math> and <math>128</math> can be written as powers of <math>2</math> | ||
- | {{ | + | {{Displayed math||<math>\eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}</math>}} |
- | This | + | This gives |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
(\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2} | (\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2} | ||
= 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\ | = 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\ | ||
Line 382: | Line 382: | ||
and thus | and thus | ||
- | {{ | + | {{Displayed math||<math>(\sqrt{8}\,)^5 > 128 </math>}} |
because <math>\frac{15}{2} > \frac{14}{2}</math> and the base <math>2</math> is greater than <math>1</math>.</li> | because <math>\frac{15}{2} > \frac{14}{2}</math> and the base <math>2</math> is greater than <math>1</math>.</li> | ||
Line 389: | Line 389: | ||
<br> | <br> | ||
<br> | <br> | ||
- | Since <math>8=2^3</math> and <math>27=3^3</math> | + | Since <math>8=2^3</math> and <math>27=3^3</math>, the first step is to simplify and write the numbers as powers of <math>2</math> and <math>3</math> respectively, |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
(8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}} | (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}} | ||
= 2^{6/5}\mbox{,}\\ | = 2^{6/5}\mbox{,}\\ | ||
Line 402: | Line 402: | ||
Now we see that | Now we see that | ||
- | {{ | + | {{Displayed math||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}} |
because <math> 3>2</math> and exponent <math>\frac{6}{5}</math> is positive. | because <math> 3>2</math> and exponent <math>\frac{6}{5}</math> is positive. | ||
Line 409: | Line 409: | ||
<br> | <br> | ||
<br> | <br> | ||
- | We rewrite the exponents | + | We rewrite the exponents due to them having a common denominator |
- | {{ | + | {{Displayed math||<math>\frac{1}{3} = \frac{2}{6} \quad</math> and <math>\quad \frac{1}{2} = \frac{3}{6}</math>.}} |
- | + | This gives | |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\ | 3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\ | ||
2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6} | 2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6} | ||
Line 422: | Line 422: | ||
and we see that | and we see that | ||
- | {{ | + | {{Displayed math||<math> 3^{1/3} > 2^{1/2} </math>}} |
because <math> 9>8</math> and the exponent <math>1/6</math> is positive.</li> | because <math> 9>8</math> and the exponent <math>1/6</math> is positive.</li> | ||
Line 439: | Line 439: | ||
- | '''Keep in mind that | + | '''Keep in mind that...''' |
- | The number raised to the power 0 | + | The number raised to the power 0 is always 1 as long as the number (the base) is not 0. |
Current revision
Theory | Exercises |
Content:
- Positive integer exponent
- Negative integer exponent
- Rational exponents
- Laws of exponents
Learning outcomes:
After this section you will have learned to:
- Recognise the concepts of base and exponent.
- Calculate integer power expressions.
- Use the laws of exponents to simplify expressions containing powers.
- Know when the laws of exponents are applicable (positive basis).
- Determine which of two powers is the larger based on a comparison of the base / exponent.
Integer exponents
We use the multiplication symbol as a shorthand for repeated addition of the same number. For example:
\displaystyle 4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.} |
In a similar way we use exponentials as a short-hand for repeated multiplication of the same number:
\displaystyle 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.} |
The 4 is called the base of the power and the 5 is its exponent.
Example 1
- \displaystyle 5^3 = 5 \cdot 5 \cdot 5 = 125
- \displaystyle 10^5 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100 000
- \displaystyle 0{,}1^3 = 0\text{.}1 \cdot 0\text{.}1 \cdot 0\text{.}1 = 0\text{.}001
- \displaystyle (-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16, but \displaystyle -2^4 = -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16
- \displaystyle 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18, but \displaystyle (2\cdot3)^2 = 6^2 = 36
Example 2
- \displaystyle \left(\displaystyle\frac{2}{3}\right)^3 = \displaystyle\frac{2}{3}\cdot \displaystyle\frac{2}{3} \cdot \displaystyle\frac{2}{3} = \displaystyle\frac{2^3}{3^3} = \displaystyle\frac{8}{27}
- \displaystyle (2\cdot 3)^4
= (2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)
\displaystyle \phantom{(2\cdot 3)^4}{} = 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3 = 2^4 \cdot 3^4 = 1296
The last example can be generalised to two useful rules when calculating powers:
\displaystyle \left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.} |
Laws of exponents
There are a few more rules that lead on from the definition of power which are useful when performing calculations. You can see for example that
\displaystyle 2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8\text{,} |
which generally can be expressed as
\displaystyle a^m \cdot a^n = a^{m+n}\mbox{.} |
There is also a useful simplification rule for the division of powers that have the same base.
\displaystyle \frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.} |
The general rule is
\displaystyle \displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.} |
For the case when the base itself is a power there is another useful rule. We see that
\displaystyle (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \cdot 3} = 5^6\mbox{} |
and
\displaystyle (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\cdot2}=5^6\mbox{.} |
Generally, this can be written
\displaystyle (a^m)^n = a^{m \cdot n}\mbox{.} |
Example 3
- \displaystyle 2^9 \cdot 2^{14} = 2^{9+14} = 2^{23}
- \displaystyle 5\cdot5^3 = 5^1\cdot5^3 = 5^{1+3} = 5^4
- \displaystyle 3^2 \cdot 3^3 \cdot 3^4 = 3^{2+3+4} = 3^9
- \displaystyle 10^5 \cdot 1000 = 10^5 \cdot 10^3 = 10^{5+3} = 10^8
Example 4
- \displaystyle \frac{3^{100}}{3^{98}} = 3^{100-98} = 3^2
- \displaystyle \frac{7^{10}}{7} = \frac{7^{10}}{7^1} = 7^{10-1} = 7^9
If a fraction has the same expression for the exponent in both the numerator and the denominator we can simplify in two ways:
\displaystyle \frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.} |
The only way for the rules of exponents to agree is to make the
following natural definition. For all non zero a we have
\displaystyle a^0 = 1\mbox{.} |
We can also run into examples where the exponent in the denominator is greater than that in the numerator. For example we have
\displaystyle \frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.} |
It is therefore necessary that we assume the negative sign of the exponent implies that
\displaystyle 3^{-2} = \frac{1}{3^2}\mbox{.} |
We therefore note that the general definition for negative exponents is that for all non zero numbers a, we have
of as follows
\displaystyle a^{-n} = \frac{1}{a^n}\mbox{.} |
Example 5
- \displaystyle \frac{7^{1293}}{7^{1293}} = 7^{1293 - 1293} = 7^0 = 1
- \displaystyle 3^7 \cdot 3^{-9} \cdot 3^4 = 3^{7+(-9)+4} = 3^2
- \displaystyle 0{,}001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3}
- \displaystyle 0{,}008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3}
- \displaystyle \left(\frac{2}{3}\right)^{-1} = \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} = 1\cdot \frac{3}{2} = \frac{3}{2}
- \displaystyle \left(\frac{1}{3^2}\right)^{-3} = (3^{-2})^{-3} = 3^{(-2)\cdot(-3)}=3^6
- \displaystyle 0.01^5 = (10^{-2})^5 = 10^{-2 \cdot 5} = 10^{-10}
If the base of a power is \displaystyle -1 then the expression will simplify to either \displaystyle -1 or \displaystyle +1 depending on the value of the exponent
\displaystyle \eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}} |
The rule is that \displaystyle (-1)^n is equal to \displaystyle -1 if \displaystyle n is odd and equal to \displaystyle +1 if \displaystyle n is even .
Example 6
- \displaystyle (-1)^{56} = 1\quad as \displaystyle 56 is an even number
- \displaystyle \frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad because 11 is an odd number
- \displaystyle \frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} = \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} = \frac{-1 \cdot 2^{127}}{2^{130}} \displaystyle \phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3} = - \frac{1}{2^3} = - \frac{1}{8}
Changing the base
A point to observe is that when simplifying expressions one should try if possible to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base. It is therefore a good idea to learn to recognise the powers of these numbers, such as:
\displaystyle 4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots |
\displaystyle 9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots |
\displaystyle 25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots |
Similarly, one should become familiar with
\displaystyle \frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots |
\displaystyle \frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots |
\displaystyle \frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots |
and so on.
Example 7
- Write \displaystyle \ 8^3 \cdot 4^{-2} \cdot 16\ as a power with base 2
- \displaystyle 8^3 \cdot 4^{-2} \cdot 16 = (2^3)^3 \cdot (2^2)^{-2} \cdot 2^4 = 2^{3 \cdot 3} \cdot 2^{2 \cdot (-2)} \cdot 2^4
- \displaystyle \qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9
- Write \displaystyle \ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ as a power with base 3.
- \displaystyle \frac{27^2 \cdot (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \cdot (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \cdot (3^{-2})^{-2}}{(3^4)^2}
- \displaystyle \qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2
- Write \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} in as simple a form as possible.
- \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} = \frac{3^4 \cdot (2^5)^2 \cdot \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \cdot 2^{5 \cdot 2} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot 2^1 +2^4} = \frac{3^4 \cdot 2^{10} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot(2^1+1)}
- \displaystyle \qquad\quad{} = \frac{ \displaystyle\frac{3^4 \cdot 2^{10} \cdot 2^2}{3^2}}{2^4 \cdot 3} = \frac{ 3^4 \cdot 2^{10} \cdot 2^2 }{3^2 \cdot 2^4 \cdot 3 } = 3^{4-2-1} \cdot 2^{10+2-4} = 3^1 \cdot 2^8= 3\cdot 2^8
Rational exponents
What happens if a number is raised to a rational exponent? Do the definitions and the rules we have used in the above calculations still hold?
For instance we note that
\displaystyle 2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2 |
so \displaystyle 2^{1/2} must be the same as \displaystyle \sqrt{2}. This is because \displaystyle \sqrt2 is defined as the number which satisfies \displaystyle \sqrt2\cdot\sqrt2 = 2 .
Generally, we define
\displaystyle a^{1/2} = \sqrt{a}\mbox{.} |
We must assume that \displaystyle a\ge 0 since no real number multiplied by itself can give a negative number.
We also see that, for example,
\displaystyle 5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5 |
which implies that \displaystyle \,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,. This can be generalised to
\displaystyle a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.} |
By combining this definition with one of our previous laws for exponents, namely \displaystyle ((a^m)^n=a^{m\cdot n}), we have that for all \displaystyle a\ge0, the following holds:
\displaystyle a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m} |
or alternatively
\displaystyle a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} |
Example 8
- \displaystyle 27^{1/3} = \sqrt[\scriptstyle 3]{27} = 3\quad as \displaystyle 3 \cdot 3 \cdot 3 =27
- \displaystyle 1000^{-1/3} = \frac{1}{1000^{1/3}} = \frac{1}{(10^3)^{1/3}} = \frac{1}{10^{3 \cdot \frac{1}{3}}} = \frac{1}{10^1} = \frac{1}{10}
- \displaystyle \frac{1}{\sqrt{8}} = \frac{1}{8^{1/2}} = \frac{1}{(2^3)^{1/2}} = \frac{1}{2^{3/2}} = 2^{-3/2}
- \displaystyle \frac{1}{16^{-1/3}} = \frac{1}{(2^4)^{-1/3}} = \frac{1}{2^{-4/3}} = 2^{-(-4/3)}= 2^{4/3}
Comparison of powers
If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents.
If the base of a power is greater than \displaystyle 1 then the power increases as the exponent increases. On the other hand, if the base lies between \displaystyle 0 and \displaystyle 1 then the power decreases as the exponent grows.
Example 9
- \displaystyle \quad 3^{5/6} > 3^{3/4}\quad because the base \displaystyle 3 is greater than \displaystyle 1 and the first exponent \displaystyle 5/6 is greater than the second exponent \displaystyle 3/4.
- \displaystyle \quad 3^{-3/4} > 3^{-5/6}\quad as the base is greater than \displaystyle 1 and the exponents satisfy \displaystyle -3/4 > - 5/6.
- \displaystyle \quad 0\text{.}3^5 < 0\text{.}3^4 \quadas the base \displaystyle 0\text{.}3 is between \displaystyle 0 and \displaystyle 1 and \displaystyle 5 > 4.
If a power has a positive exponent it increases as the base increases. The opposite applies if the exponent is negative, that is to say the power decreases as the base increases.
Example 10
- \displaystyle \quad 5^{3/2} > 4^{3/2}\quad as the base \displaystyle 5 is larger than the base \displaystyle 4 and both powers have the same positive exponent \displaystyle 3/2.
- \displaystyle \quad 2^{-5/3} > 3^{-5/3}\quad as the bases satisfy \displaystyle 2<3 and the powers have a negative exponent \displaystyle -5/3.
Sometimes powers need to be rewritten in order to determine the relative sizes. For example to compare \displaystyle 125^2 with \displaystyle 36^3 we can rewrite them as
\displaystyle
125^2 = (5^3)^2 = 5^6\quad \text{and}\quad 36^3 = (6^2)^3 = 6^6 |
after which we see that \displaystyle 36^3 > 125^2.
Example 11
Determine which of the following pairs of numbers is the greater:
- \displaystyle 25^{1/3} and \displaystyle 5^{3/4} .
The base 25 can be rewritten in terms of the second base \displaystyle 5 by putting \displaystyle 25= 5\cdot 5= 5^2. Therefore\displaystyle 25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}\text{,} hence we see that
\displaystyle 5^{3/4} > 25^{1/3} - \displaystyle (\sqrt{8}\,)^5 and \displaystyle 128.
Both \displaystyle 8 and \displaystyle 128 can be written as powers of \displaystyle 2\displaystyle \eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}} This gives
\displaystyle \begin{align*} (\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2} = 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\ 128 &= 2^7 = 2^{14/2} \end{align*}
and thus
\displaystyle (\sqrt{8}\,)^5 > 128 - \displaystyle (8^2)^{1/5} and \displaystyle (\sqrt{27}\,)^{4/5}.
Since \displaystyle 8=2^3 and \displaystyle 27=3^3, the first step is to simplify and write the numbers as powers of \displaystyle 2 and \displaystyle 3 respectively,\displaystyle \begin{align*} (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}} = 2^{6/5}\mbox{,}\\ (\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5} = 27^{ \frac{1}{2} \cdot \frac{4}{5}} = 27^{2/5} = (3^3)^{2/5} = 3^{3 \cdot \frac{2}{5}} = 3^{6/5}\mbox{.}
\end{align*}
Now we see that
\displaystyle (\sqrt{27}\,)^{4/5} > (8^2)^{1/5} because \displaystyle 3>2 and exponent \displaystyle \frac{6}{5} is positive.
- \displaystyle 3^{1/3} and \displaystyle 2^{1/2}
We rewrite the exponents due to them having a common denominator\displaystyle \frac{1}{3} = \frac{2}{6} \quad and \displaystyle \quad \frac{1}{2} = \frac{3}{6}. This gives
\displaystyle \begin{align*} 3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\ 2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6}
\end{align*}
and we see that
\displaystyle 3^{1/3} > 2^{1/2}
Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that...
The number raised to the power 0 is always 1 as long as the number (the base) is not 0.
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about powers in the English Wikipedi
What is the greatest prime number? Read more at The Prime Page
Useful web sites