Processing Math: Done
Solution 4.4:2f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | Using the unit circle shows that the equation   | + | Using the unit circle shows that the equation <math>\cos 3x = -1/\!\sqrt{2}</math>  | 
| - | <math>\  | + | has two solutions for <math>0\le 3x\le 2\pi\,</math>,   | 
| - | has two solutions for   | + | |
| - | <math>0\le   | + | |
| - | + | {{Displayed math||<math>3x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}\qquad\text{and}\qquad 3x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}\,\textrm{.}</math>}}  | |
| - | <math>3x=\frac{\pi }{2}+\frac{\pi }{4}=\frac{3\pi }{4}  | + | |
| - | + | ||
| - | + | ||
[[Image:4_4_2_f.gif|center]]  | [[Image:4_4_2_f.gif|center]]  | ||
| - | We obtain the other solutions by adding multiples of   | + | We obtain the other solutions by adding multiples of <math>2\pi</math>,  | 
| - | <math>2\pi </math>,  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>3x = \frac{3\pi}{4} + 2n\pi\qquad\text{and}\qquad 3x = \frac{5\pi}{4} + 2n\pi\,,</math>}}  | ||
i.e.  | i.e.  | ||
| + | {{Displayed math||<math>x = \frac{\pi}{4} + \frac{2}{3}n\pi\qquad\text{and}\qquad x = \frac{5\pi}{12} + \frac{2}{3}n\pi\,,</math>}}  | ||
| - | + | where ''n'' is an arbitrary integer.  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | where   | + | |
| - | + | ||
| - | is an arbitrary integer.  | + | |
Current revision
Using the unit circle shows that the equation 
2 
3x
2
 2+ 4=43 and3x= + 4=45 . | 
We obtain the other solutions by adding multiples of 
 +2n and3x=45 +2n![]() ![]()  | 
i.e.
 4+32n andx=125 +32n![]() ![]()  | 
where n is an arbitrary integer.


