2.3 Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Regerate images and tabs) |
|||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{Ej vald flik|[[2.3 Andragradsuttryck| | + | {{Ej vald flik|[[2.3 Andragradsuttryck|Theory]]}} |
- | {{Vald flik|[[2.3 Övningar| | + | {{Vald flik|[[2.3 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Exercise 2.3:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Complete the square of the expressions | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 22: | Line 22: | ||
</div>{{#NAVCONTENT:Svar|Svar 2.3:1|Lösning a|Lösning 2.3:1a|Lösning b|Lösning 2.3:1b|Lösning c|Lösning 2.3:1c|Lösning d|Lösning 2.3:1d}} | </div>{{#NAVCONTENT:Svar|Svar 2.3:1|Lösning a|Lösning 2.3:1a|Lösning b|Lösning 2.3:1b|Lösning c|Lösning 2.3:1c|Lösning d|Lösning 2.3:1d}} | ||
- | === | + | ===Exercise 2.3:2=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Solve the following second order equations by completing the square | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 42: | Line 42: | ||
</div>{{#NAVCONTENT:Svar|Svar 2.3:2|Lösning a|Lösning 2.3:2a|Lösning b|Lösning 2.3:2b|Lösning c|Lösning 2.3:2c|Lösning d|Lösning 2.3:2d|Lösning e|Lösning 2.3:2e|Lösning f|Lösning 2.3:2f}} | </div>{{#NAVCONTENT:Svar|Svar 2.3:2|Lösning a|Lösning 2.3:2a|Lösning b|Lösning 2.3:2b|Lösning c|Lösning 2.3:2c|Lösning d|Lösning 2.3:2d|Lösning e|Lösning 2.3:2e|Lösning f|Lösning 2.3:2f}} | ||
- | === | + | ===Exercise 2.3:3=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Solve the following equations directly | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 63: | Line 63: | ||
</div>{{#NAVCONTENT:Svar|Svar 2.3:3|Lösning a|Lösning 2.3:3a|Lösning b|Lösning 2.3:3b|Lösning c|Lösning 2.3:3c|Lösning d|Lösning 2.3:3d|Lösning e|Lösning 2.3:3e|Lösning f|Lösning 2.3:3f}} | </div>{{#NAVCONTENT:Svar|Svar 2.3:3|Lösning a|Lösning 2.3:3a|Lösning b|Lösning 2.3:3b|Lösning c|Lösning 2.3:3c|Lösning d|Lösning 2.3:3d|Lösning e|Lösning 2.3:3e|Lösning f|Lösning 2.3:3f}} | ||
- | === | + | ===Exercise 2.3:4=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine a second-degree equation which has roots | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="100%" | <math>-1\ </math> | + | |width="100%" | <math>-1\ </math> and <math>\ 2</math> |
|- | |- | ||
|b) | |b) | ||
- | |width="100" | <math>1+\sqrt{3}\ </math> | + | |width="100" | <math>1+\sqrt{3}\ </math> and <math>\ 1-\sqrt{3}</math> |
|- | |- | ||
|c) | |c) | ||
- | |width="100" | <math>3\ </math> | + | |width="100" | <math>3\ </math> and <math>\ \sqrt{3}</math> |
|} | |} | ||
</div>{{#NAVCONTENT:Svar|Svar 2.3:4|Lösning a|Lösning 2.3:4a|Lösning b|Lösning 2.3:4b|Lösning c|Lösning 2.3:4c}} | </div>{{#NAVCONTENT:Svar|Svar 2.3:4|Lösning a|Lösning 2.3:4a|Lösning b|Lösning 2.3:4b|Lösning c|Lösning 2.3:4c}} | ||
- | === | + | ===Exercise 2.3:5=== |
<div class="ovning"> | <div class="ovning"> | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="100%" | | + | |width="100%" | Determine a second-degree equation which only has <math>\,-7\,</math> as a root. |
|- | |- | ||
|b) | |b) | ||
- | |width="100" | | + | |width="100" | Determine a value of <math>\,x\,</math> which makes the expression <math>\,4x^2-28x+48\,</math> be negative. |
|- | |- | ||
|c) | |c) | ||
- | |width="100" | | + | |width="100" | The equation <math>\,x^2+4x+b=0\,</math> has one root at <math>\,x=1\,</math>. Determine the value of the constant <math>\,b\,</math>. |
|} | |} | ||
</div>{{#NAVCONTENT:Svar|Svar 2.3:5|Lösning a|Lösning 2.3:5a|Lösning b|Lösning 2.3:5b|Lösning c|Lösning 2.3:5c}} | </div>{{#NAVCONTENT:Svar|Svar 2.3:5|Lösning a|Lösning 2.3:5a|Lösning b|Lösning 2.3:5b|Lösning c|Lösning 2.3:5c}} | ||
- | === | + | ===Exercise 2.3:6=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine the smallest value that the following polynomial can take | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 106: | Line 106: | ||
- | === | + | ===Exercise 2.3:7=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine the largest value that the following polynomials can take. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 119: | Line 119: | ||
</div>{{#NAVCONTENT:Svar|Svar 2.3:7|Lösning a|Lösning 2.3:7a|Lösning b|Lösning 2.3:7b|Lösning c|Lösning 2.3:7c}} | </div>{{#NAVCONTENT:Svar|Svar 2.3:7|Lösning a|Lösning 2.3:7a|Lösning b|Lösning 2.3:7b|Lösning c|Lösning 2.3:7c}} | ||
- | === | + | ===Exercise 2.3:8=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Sketch the graph of the following functions | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 132: | Line 132: | ||
</div>{{#NAVCONTENT:Svar|Svar 2.3:8|Lösning a|Lösning 2.3:8a|Lösning b|Lösning 2.3:8b|Lösning c|Lösning 2.3:8c}} | </div>{{#NAVCONTENT:Svar|Svar 2.3:8|Lösning a|Lösning 2.3:8a|Lösning b|Lösning 2.3:8b|Lösning c|Lösning 2.3:8c}} | ||
- | === | + | ===Exercise 2.3:9=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Find all the points where the x-axis and the following curves intersect. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 145: | Line 145: | ||
</div>{{#NAVCONTENT:Svar|Svar 2.3:9|Lösning a|Lösning 2.3:9a|Lösning b|Lösning 2.3:9b|Lösning c|Lösning 2.3:9c}} | </div>{{#NAVCONTENT:Svar|Svar 2.3:9|Lösning a|Lösning 2.3:9a|Lösning b|Lösning 2.3:9b|Lösning c|Lösning 2.3:9c}} | ||
- | === | + | ===Exercise 2.3:10=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | In the ''xy''-plane, draw in all the points whose coordinates <math>\,(x,y)\,</math> satisfy | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) |
Revision as of 13:36, 3 August 2008
Theory | Exercises |
Exercise 2.3:1
Complete the square of the expressions
a) | \displaystyle x^2-2x | b) | \displaystyle x^2+2x-1 | c) | \displaystyle 5+2x-x^2 | d) | \displaystyle x^2+5x+3 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Exercise 2.3:2
Solve the following second order equations by completing the square
a) | \displaystyle x^2-4x+3=0 | b) | \displaystyle y^2+2y-15=0 | c) | \displaystyle y^2+3y+4=0 |
d) | \displaystyle 4x^2-28x+13=0 | e) | \displaystyle 5x^2+2x-3=0 | f) | \displaystyle 3x^2-10x+8=0 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Exercise 2.3:3
Solve the following equations directly
a) | \displaystyle x(x+3)=0 | b) | \displaystyle (x-3)(x+5)=0 |
c) | \displaystyle 5(3x-2)(x+8)=0 | d) | \displaystyle x(x+3)-x(2x-9)=0 |
e) | \displaystyle (x+3)(x-1)-(x+3)(2x-9)=0 | f) | \displaystyle x(x^2-2x)+x(2-x)=0 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Exercise 2.3:4
Determine a second-degree equation which has roots
a) | \displaystyle -1\ and \displaystyle \ 2 |
b) | \displaystyle 1+\sqrt{3}\ and \displaystyle \ 1-\sqrt{3} |
c) | \displaystyle 3\ and \displaystyle \ \sqrt{3} |
Exercise 2.3:5
a) | Determine a second-degree equation which only has \displaystyle \,-7\, as a root. |
b) | Determine a value of \displaystyle \,x\, which makes the expression \displaystyle \,4x^2-28x+48\, be negative. |
c) | The equation \displaystyle \,x^2+4x+b=0\, has one root at \displaystyle \,x=1\,. Determine the value of the constant \displaystyle \,b\,. |
Exercise 2.3:6
Determine the smallest value that the following polynomial can take
a) | \displaystyle x^2-2x+1 | b) | \displaystyle x^2-4x+2 | c) | \displaystyle x^2-5x+7 |
Exercise 2.3:7
Determine the largest value that the following polynomials can take.
a) | \displaystyle 1-x^2 | b) | \displaystyle -x^2+3x-4 | c) | \displaystyle x^2+x+1 |
Exercise 2.3:8
Sketch the graph of the following functions
a) | \displaystyle f(x)=x^2+1 | b) | \displaystyle f(x)=(x-1)^2+2 | c) | \displaystyle f(x)=x^2-6x+11 |
Exercise 2.3:9
Find all the points where the x-axis and the following curves intersect.
a) | \displaystyle y=x^2-1 | b) | \displaystyle y=x^2-5x+6 | c) | \displaystyle y=3x^2-12x+9 |
Exercise 2.3:10
In the xy-plane, draw in all the points whose coordinates \displaystyle \,(x,y)\, satisfy
a) | \displaystyle y \geq x^2\ och \displaystyle \ y \leq 1 | b) | \displaystyle y \leq 1-x^2\ och \displaystyle \ x \geq 2y-3 |
c) | \displaystyle 1 \geq x \geq y^2 | d) | \displaystyle x^2 \leq y \leq x |
Svar
Lösning a
Lösning b
Lösning c
Lösning d