Solution 4.4:4
From Förberedande kurs i matematik 1
m (Lösning 4.4:4 moved to Solution 4.4:4: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | {{ | + | The idea is first to find the general solution to the equation and then to see which angles lie between |
- | < | + | <math>0^{\circ }</math> |
- | {{ | + | and |
- | {{ | + | <math>360^{\circ }</math>. |
- | < | + | |
- | {{ | + | If we start by considering the expression |
- | {{ | + | <math>\text{2}v+\text{1}0^{\circ }\text{ }</math> |
- | < | + | as an unknown, then we have a usual basic trigonometric equation. One solution which we can see directly is |
- | {{ | + | |
+ | |||
+ | <math>\text{2}v+\text{1}0^{\circ }=110^{\circ }</math> | ||
+ | |||
+ | |||
+ | There is then a further solution which satisfies | ||
+ | <math>0^{\circ }\le \text{2}v+\text{1}0^{\circ }\le \text{36}0^{\circ }</math>, where | ||
+ | <math>\text{2}v+\text{1}0^{\circ }\text{ }</math> | ||
+ | lies in the third quadrant and makes the same angle with the negative y-axis as | ||
+ | <math>\text{1}00^{\circ }</math> | ||
+ | makes with the positive | ||
+ | <math>y</math> | ||
+ | -axis, i.e. | ||
+ | <math>\text{2}v+\text{1}0^{\circ }\text{ }</math> | ||
+ | makes an angle | ||
+ | <math>\text{11}0^{\circ }-\text{9}0^{\circ }=\text{2}0^{\circ }~\text{ }</math> | ||
+ | with the negative | ||
+ | <math>y</math> | ||
+ | -axis and consequently | ||
+ | |||
+ | |||
+ | <math>\text{2}v+\text{1}0^{\circ }=270^{\circ }-20^{\circ }=250^{\circ }</math> | ||
+ | |||
[[Image:4_4_4.gif|center]] | [[Image:4_4_4.gif|center]] | ||
+ | |||
+ | |||
+ | There is then a further solution which satisfies | ||
+ | <math>0^{\circ }\le \text{2}v+\text{1}0^{\circ }\le \text{36}0^{\circ }</math>, where | ||
+ | <math>\text{2}v+\text{1}0^{\circ }\text{ }</math> | ||
+ | lies in the third quadrant and makes the same angle with the negative y-axis as | ||
+ | <math>\text{1}00^{\circ }</math> | ||
+ | makes with the positive | ||
+ | <math>y</math> | ||
+ | -axis, i.e. | ||
+ | <math>\text{2}v+\text{1}0^{\circ }\text{ }</math> | ||
+ | makes an angle | ||
+ | <math>\text{11}0^{\circ }-\text{9}0^{\circ }=\text{2}0^{\circ }~\text{ }</math> | ||
+ | with the negative | ||
+ | <math>y</math> | ||
+ | -axis and consequently | ||
+ | |||
+ | |||
+ | <math>\text{2}v+\text{1}0^{\circ }=270^{\circ }-20^{\circ }=250^{\circ }</math> | ||
+ | |||
+ | |||
+ | FIGURE1 FIGURE2 | ||
+ | |||
+ | Now it is easy to write down the general solution, | ||
+ | |||
+ | |||
+ | <math>\text{2}v+\text{1}0^{\circ }=110^{\circ }+n\centerdot 360^{\circ }</math> | ||
+ | and | ||
+ | |||
+ | <math>\text{2}v+\text{1}0^{\circ }=250^{\circ }+n\centerdot 360^{\circ }</math> | ||
+ | |||
+ | |||
+ | and if we make | ||
+ | <math>v</math> | ||
+ | the subject, we get | ||
+ | |||
+ | |||
+ | <math>v=50^{\circ }+n\centerdot 180^{\circ }</math> | ||
+ | and | ||
+ | |||
+ | <math>v=120^{\circ }+n\centerdot 180^{\circ }</math> | ||
+ | EQ6 | ||
+ | |||
+ | For different values of the integers | ||
+ | <math>n</math>, we see that the corresponding solutions are: | ||
+ | |||
+ | |||
+ | <math>\begin{array}{*{35}l} | ||
+ | \cdots \cdots & \cdots \cdots & \cdots \cdots \\ | ||
+ | n=-2 & v=50^{\circ }-2\centerdot 180^{\circ }=-310^{\circ } & v=120^{\circ }-2\centerdot 180^{\circ }=-240^{\circ } \\ | ||
+ | n=-1 & v=50^{\circ }-1\centerdot 180^{\circ }=-130^{\circ } & v=120^{\circ }-1\centerdot 180^{\circ }=-60^{\circ } \\ | ||
+ | n=0 & v=50^{\circ }+0\centerdot 180^{\circ }=50^{\circ } & v=120^{\circ }+0\centerdot 180^{\circ }=120^{\circ } \\ | ||
+ | n=1 & v=50^{\circ }+1\centerdot 180^{\circ }=230^{\circ } & v=120^{\circ }+1\centerdot 180^{\circ }=300^{\circ } \\ | ||
+ | n=2 & v=50^{\circ }+2\centerdot 180^{\circ }=410^{\circ } & v=120^{\circ }+2\centerdot 180^{\circ }=480^{\circ } \\ | ||
+ | n=3 & v=50^{\circ }+3\centerdot 180^{\circ }=590^{\circ } & v=120^{\circ }+3\centerdot 180^{\circ }=660^{\circ } \\ | ||
+ | \cdots \cdots & \cdots \cdots & \cdots \cdots \\ | ||
+ | \end{array}</math> | ||
+ | |||
+ | |||
+ | |||
+ | From the table, we see that the solutions that are between | ||
+ | <math>0^{\circ }</math> | ||
+ | and | ||
+ | <math>360^{\circ }</math> | ||
+ | are | ||
+ | |||
+ | |||
+ | <math>v=50,\quad v=120^{\circ },\quad v=230^{\circ }</math> | ||
+ | and | ||
+ | <math>v=300^{\circ }</math> |
Revision as of 10:20, 1 October 2008
The idea is first to find the general solution to the equation and then to see which angles lie between
If we start by considering the expression
=110
There is then a further solution which satisfies
2v+10
360
−90
=20
=270
−20
=250
There is then a further solution which satisfies
2v+10
360
−90
=20
=270
−20
=250
FIGURE1 FIGURE2
Now it is easy to write down the general solution,
=110
+n
360
=250
+n
360
and if we make
+n
180
+n
180
For different values of the integers
n=−2n=−1n=0n=1n=2n=3
v=50
−2
180
=−310
v=50
−1
180
=−130
v=50
+0
180
=50
v=50
+1
180
=230
v=50
+2
180
=410
v=50
+3
180
=590
v=120
−2
180
=−240
v=120
−1
180
=−60
v=120
+0
180
=120
v=120
+1
180
=300
v=120
+2
180
=480
v=120
+3
180
=660
From the table, we see that the solutions that are between
v=120
v=230