Processing Math: 27%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

4.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-Övningar +Exercises))
m (Robot: Automated text replacement (-4.3 Trigonometriska samband +4.3 Trigonometric relations))
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[4.3 Trigonometriska samband|Theory]]}}
+
{{Ej vald flik|[[4.3 Trigonometric relations|Theory]]}}
{{Vald flik|[[4.3 Exercises|Exercises]]}}
{{Vald flik|[[4.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  

Revision as of 13:38, 10 September 2008

       Theory          Exercises      

Exercise 4.3:1

Determine the angles v between 2 and 2 which satisfy

a) cosv=cos5 b) sinv=sin7 c) tanv=tan72

Exercise 4.3:2

Determine the angles v between 0 and which satisfy

a) cosv=cos23 b) cosv=cos57

Exercise 4.3:3

Suppose that 2v2 and that sinv=a. With the help of a express

a) sin(v) b) sin(v)
c) cosv d) \displaystyle \sin{\left(\displaystyle \frac{\pi}{2}-v\right)}
e) \displaystyle \cos{\left( \displaystyle \frac{\pi}{2} + v\right)} f) \displaystyle \sin{\left( \displaystyle \frac{\pi}{3} + v \right)}

Exercise 4.3:4

Suppose that \displaystyle \,0 \leq v \leq \pi\, and that \displaystyle \,\cos{v}=b\,. With the help of \displaystyle \,b express

a) \displaystyle \sin^2{v} b) \displaystyle \sin{v}
c) \displaystyle \sin{2v} d) \displaystyle \cos{2v}
e) \displaystyle \sin{\left( v+\displaystyle \frac{\pi}{4} \right)} f) \displaystyle \cos{\left( v-\displaystyle \frac{\pi}{3} \right)}

Exercise 4.3:5

Determine \displaystyle \,\cos{v}\, and \displaystyle \,\tan{v}\,, where \displaystyle \,v\, is an acute angle in a triangle such that \displaystyle \,\sin{v}=\displaystyle \frac{5}{7}\,.

Exercise 4.3:6

a) Determine \displaystyle \ \sin{v}\ and \displaystyle \ \tan{v}\ if \displaystyle \ \cos{v}=\displaystyle \frac{3}{4}\ and \displaystyle \ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,.
b) Determine \displaystyle \ \cos{v}\ and \displaystyle \ \tan{v}\ if \displaystyle \ \sin{v}=\displaystyle \frac{3}{10}\ and \displaystyle \,v\, lies in the second quadrant.
c) Determine \displaystyle \ \sin{v}\ and \displaystyle \ \cos{v}\ if \displaystyle \ \tan{v}=3\ and \displaystyle \ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,.

Exercise 4.3:7

Determine \displaystyle \ \sin{(x+y)}\ if

a) \displaystyle \sin{x}=\displaystyle \frac{2}{3}\,,\displaystyle \ \sin{y}=\displaystyle \frac{1}{3}\ and \displaystyle \,x\,, \displaystyle \,y\, are angles in the first quadrant.
b) \displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ and \displaystyle \,x\,, \displaystyle \,y\, are angles in the first quadrant.

Exercise 4.3:8

Show the following trigonometric relations

a) \displaystyle \tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}
b) \displaystyle \displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}
c) \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}
d) \displaystyle \displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v

Exercise 4.3:9

Show Feynman's equality
\displaystyle \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}
(Hint: use the formula for double angles on \displaystyle \,\sin 160^\circ\,.)