3.4 Logarithmic equations
From Förberedande kurs i matematik 1
m (Regerate images and tabs) |
|||
Line 9: | Line 9: | ||
{{Info| | {{Info| | ||
'''Innehåll:''' | '''Innehåll:''' | ||
- | * | + | * Logarithmic Equations |
- | * | + | * Exponential equations |
- | * | + | * Spurious roots |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes::''' |
- | + | After this section, you will have learned to: | |
- | * | + | * Solve equations that contain logarithm or exponential expressions and which can be reduced to first or second order equations. |
- | * | + | * Deal with spurious roots, and know when they arise. |
}} | }} | ||
- | == | + | == Basic Equations == |
- | + | Equations where logarithms appear can vary a lot. Here are some examples where the solution is given almost immediately by the definition of a logarithm, that is. | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
Line 31: | Line 31: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | ( | + | (We consider only 10-logarithms or natural logarithms.) |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
Lös ekvationerna | Lös ekvationerna | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>10^x = 537\quad</math> | + | <li><math>10^x = 537\quad</math> has a solution <math>x = \lg 537</math>.</li> |
- | <li><math>10^{5x} = 537\quad</math> | + | <li><math>10^{5x} = 537\quad</math> gives <math>5x |
- | = \lg 537</math>, | + | = \lg 537</math>, i.e. <math>x=\frac{1}{5} \lg 537</math>.</li> |
<li><math>\frac{3}{e^x} = 5 \quad | <li><math>\frac{3}{e^x} = 5 \quad | ||
- | </math> | + | </math> Multiplication of both sides with <math>e^x |
- | </math> | + | </math> and division by 5 gives <math>\tfrac{3}{5}=e^x |
- | </math>, | + | </math>, which means that <math>x=\ln\tfrac{3}{5}</math>.</li> |
- | <li><math>\lg x = 3 \quad</math> | + | <li><math>\lg x = 3 \quad</math> The definition gives directly <math> |
x=10^3 = 1000</math>.</li> | x=10^3 = 1000</math>.</li> | ||
- | <li><math>\lg(2x-4) = 2 \quad</math> | + | <li><math>\lg(2x-4) = 2 \quad</math> From the definition we have <math> |
- | 2x-4 = 10^2 = 100</math> | + | 2x-4 = 10^2 = 100</math> and it follows that <math>x = 52</math>.</li> |
</ol> | </ol> | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Solve the equation <math>\,(\sqrt{10}\,)^x = 25</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Since <math>\sqrt{10} = 10^{1/2}</math> the left-hand side is equal to <math>(\sqrt{10}\,)^x = (10^{1/2})^x = 10^{x/2}</math> and the equation becomes | |
{{Fristående formel||<math>10^{x/2} = 25\,\mbox{.}</math>}} | {{Fristående formel||<math>10^{x/2} = 25\,\mbox{.}</math>}} | ||
- | + | This equation has a solution <math>\frac{x}{2} = \lg 25</math>, ie. <math>x = 2 \lg 25</math>.</li> | |
- | <li> | + | <li>Solve the equation <math>\,\frac{3 \ln 2x}{2} + 1 = \frac{1}{2}</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Multiply both sides by 2 and then subtracting 2 from both sides | |
{{Fristående formel||<math> 3 \ln 2x = -1\,\mbox{.}</math>}} | {{Fristående formel||<math> 3 \ln 2x = -1\,\mbox{.}</math>}} | ||
- | + | Divide both sides by 3 | |
{{Fristående formel||<math> \ln 2x = -\frac{1}{3}\,\mbox{.}</math>}} | {{Fristående formel||<math> \ln 2x = -\frac{1}{3}\,\mbox{.}</math>}} | ||
- | + | Now, the definition directly gives <math>2x = e^{-1/3}</math>, which means that | |
{{Fristående formel||<math> x = {\textstyle\frac{1}{2}} e^{-1/3} = \frac{1}{2e^{1/3}}\,\mbox{.} </math>}}</li> | {{Fristående formel||<math> x = {\textstyle\frac{1}{2}} e^{-1/3} = \frac{1}{2e^{1/3}}\,\mbox{.} </math>}}</li> | ||
</ol> | </ol> | ||
</div> | </div> | ||
- | + | In many practical applications of exponential growth or decline there appear equations of the type | |
{{Fristående formel||<math>a^x = b\,\mbox{,}</math>}} | {{Fristående formel||<math>a^x = b\,\mbox{,}</math>}} | ||
- | + | where <math>a</math> and <math>b</math> are positive numbers. These equations are best solved by taking the logarithm of both sides | |
{{Fristående formel||<math>\lg a^x = \lg b</math>}} | {{Fristående formel||<math>\lg a^x = \lg b</math>}} | ||
- | + | and use the law of logarithms for powers | |
{{Fristående formel||<math>x \cdot \lg a = \lg b</math>}} | {{Fristående formel||<math>x \cdot \lg a = \lg b</math>}} | ||
- | + | which gives the solution <math>\ x = \displaystyle \frac{\lg b}{\lg a}</math>. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li>Solve the equation <math>\,3^x = 20</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Take logarithms of both sides | |
{{Fristående formel||<math>\lg 3^x = \lg 20\,\mbox{.}</math>}} | {{Fristående formel||<math>\lg 3^x = \lg 20\,\mbox{.}</math>}} | ||
- | + | The left-hand side can be written as <math>\lg 3^x = x \cdot \lg 3</math> giving | |
{{Fristående formel||<math>x = \displaystyle \frac{\lg 20}{\lg 3} \quad ({}\approx 2{,}727)\,\mbox{.}</math>}}</li> | {{Fristående formel||<math>x = \displaystyle \frac{\lg 20}{\lg 3} \quad ({}\approx 2{,}727)\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li>Solve the equation <math>\ 5000 \cdot 1{,}05^x = 10\,000</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Divide both sides by 5000 | |
{{Fristående formel||<math>1{,}05^x = \displaystyle \frac{ 10\,000}{5\,000} = 2\,\mbox{.}</math>}} | {{Fristående formel||<math>1{,}05^x = \displaystyle \frac{ 10\,000}{5\,000} = 2\,\mbox{.}</math>}} | ||
- | + | This equation can be solved by taking the lg logarithm of both sides of and rewriting the left-hand side as <math>\lg 1{,}05^x = x\cdot\lg 1{,}05</math>, | |
{{Fristående formel||<math>x = \frac{\lg 2}{\lg 1{,}05} \quad ({}\approx 14{,}2)\,\mbox{.}</math>}}</li> | {{Fristående formel||<math>x = \frac{\lg 2}{\lg 1{,}05} \quad ({}\approx 14{,}2)\,\mbox{.}</math>}}</li> | ||
</ol> | </ol> | ||
Line 110: | Line 110: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li>Solve the equation <math>\ 2^x \cdot 3^x = 5</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | The left-hand side can be rewritten using the laws of powers giving <math>2^x\cdot 3^x=(2 \cdot 3)^x</math> and the equation becomes | |
{{Fristående formel||<math>6^x = 5\,\mbox{.}</math>}} | {{Fristående formel||<math>6^x = 5\,\mbox{.}</math>}} | ||
- | + | This equation is solved in the usual way by taking logarithms giving | |
{{Fristående formel||<math>x = \frac{\lg 5}{\lg 6}\quad ({}\approx 0{,}898)\,\mbox{.}</math>}}</li> | {{Fristående formel||<math>x = \frac{\lg 5}{\lg 6}\quad ({}\approx 0{,}898)\,\mbox{.}</math>}}</li> | ||
- | <li> | + | <li>Solve the equation <math>\ 5^{2x + 1} = 3^{5x}</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Take logarithms of both sides and use the laws of logarithms <math>\lg a^b = b \cdot \lg a</math> | |
{{Fristående formel||<math>\eqalign{(2x+1)\lg 5 &= 5x \cdot \lg 3\,\mbox{,}\cr 2x \cdot \lg 5 + \lg 5 &= 5x \cdot \lg 3\,\mbox{.}\cr}</math>}} | {{Fristående formel||<math>\eqalign{(2x+1)\lg 5 &= 5x \cdot \lg 3\,\mbox{,}\cr 2x \cdot \lg 5 + \lg 5 &= 5x \cdot \lg 3\,\mbox{.}\cr}</math>}} | ||
- | + | Collect <math>x</math> to one side | |
{{Fristående formel||<math>\eqalign{\lg 5 &= 5x \cdot \lg 3 -2x \cdot \lg 5\,\mbox{,}\cr \lg 5 &= x\,(5 \lg 3 -2 \lg 5)\,\mbox{.}\cr}</math>}} | {{Fristående formel||<math>\eqalign{\lg 5 &= 5x \cdot \lg 3 -2x \cdot \lg 5\,\mbox{,}\cr \lg 5 &= x\,(5 \lg 3 -2 \lg 5)\,\mbox{.}\cr}</math>}} | ||
- | + | The solution is | |
{{Fristående formel||<math>x = \frac{\lg 5}{5 \lg 3 -2 \lg 5}\,\mbox{.}</math>}}</li> | {{Fristående formel||<math>x = \frac{\lg 5}{5 \lg 3 -2 \lg 5}\,\mbox{.}</math>}}</li> | ||
</ol> | </ol> | ||
Line 135: | Line 135: | ||
- | == | + | == Some more complicated equations == |
- | + | Equations containing exponential or logarithmic expressions can sometimes be treated as first order or second order equations by considering "<math>\ln x</math>" or "<math>e^x</math>" as the unknown variable. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
- | + | Solve the equation <math>\,\frac{6e^x}{3e^x+1}=\frac{5}{e^{-x}+2}</math>. | |
<br> | <br> | ||
<br> | <br> | ||
- | + | Multiply both sides by <math>3e^x+1</math> och <math>e^{-x}+2</math> to eliminate the denominators | |
{{Fristående formel||<math>6e^x(e^{-x}+2) = 5(3e^x+1)\,\mbox{.}</math>}} | {{Fristående formel||<math>6e^x(e^{-x}+2) = 5(3e^x+1)\,\mbox{.}</math>}} | ||
- | + | Note that since <math>e^x</math> and <math>e^{-x}</math> are always positive regardless of the value of <math>x</math> in this latest step we have multiply the equation by factors <math>3e^x+1</math> and <math>e^{-x} +2</math>both of which are different from zero, so this step cannot introduce new (spurious) roots of the equation. | |
- | + | Simplify both sides of the equation | |
{{Fristående formel||<math>6+12e^x = 15e^x+5\,\mbox{,}</math>}} | {{Fristående formel||<math>6+12e^x = 15e^x+5\,\mbox{,}</math>}} | ||
- | + | where we used <math>e^{-x} \cdot e^x = e^{-x + x} = e^0 = 1</math>. If we treat <math>e^x</math> as the unknown variable, the equation is essentially a first order equation which has a solution | |
{{Fristående formel||<math>e^x=\frac{1}{3}\,\mbox{.}</math>}} | {{Fristående formel||<math>e^x=\frac{1}{3}\,\mbox{.}</math>}} | ||
- | + | Taking logarithms then gives the answer | |
{{Fristående formel||<math>x=\ln\frac{1}{3}= \ln 3^{-1} = -1 \cdot \ln 3 = -\ln 3\,\mbox{.}</math>}} | {{Fristående formel||<math>x=\ln\frac{1}{3}= \ln 3^{-1} = -1 \cdot \ln 3 = -\ln 3\,\mbox{.}</math>}} | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
- | + | Solve the equation <math>\,\frac{1}{\ln x} + \ln\frac{1}{x} = 1</math>. | |
<br> | <br> | ||
<br> | <br> | ||
- | + | The term <math>\ln\frac{1}{x}</math> can be written as <math>\ln\frac{1}{x} = \ln x^{-1} = -1 \cdot \ln x = - \ln x</math> and then the equation becomes | |
{{Fristående formel||<math>\frac{1}{\ln x} - \ln x = 1\,\mbox{,}</math>}} | {{Fristående formel||<math>\frac{1}{\ln x} - \ln x = 1\,\mbox{,}</math>}} | ||
- | + | where we can consider <math>\ln x</math> as a new unknown. We multiply both sides with <math>\ln x</math> (which is different from zero when <math>x \neq 1</math>) gives us a quadratic equation in <math>\ln x</math> | |
{{Fristående formel||<math>1 - (\ln x)^2 = \ln x\,\mbox{,}</math>}} | {{Fristående formel||<math>1 - (\ln x)^2 = \ln x\,\mbox{,}</math>}} | ||
{{Fristående formel||<math> (\ln x)^2 + \ln x - 1 = 0\,\mbox{.}</math>}} | {{Fristående formel||<math> (\ln x)^2 + \ln x - 1 = 0\,\mbox{.}</math>}} | ||
- | + | Completing the square on the left-hand side | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
Line 180: | Line 180: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | We continue by taking the root giving | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
\ln x = -\frac{1}{2} \pm \frac{\sqrt{5}}{2} \,\mbox{.}</math>}} | \ln x = -\frac{1}{2} \pm \frac{\sqrt{5}}{2} \,\mbox{.}</math>}} | ||
- | + | This means that the equation has two solutions | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
Line 194: | Line 194: | ||
- | == | + | == Spurious roots == |
- | + | When you solve equations you should also bear in mind that the arguments of logarithms have to be positive and that terms of the type <math>e^{(\ldots)}</math> can only have positive values. The risk is otherwise that you get spurious roots. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
- | + | Solve the equation <math>\,\ln(4x^2 -2x) = \ln (1-2x)</math>. | |
<br> | <br> | ||
<br> | <br> | ||
- | + | For the equation to be satisfied the arguments <math>4x^2-2x</math> and <math>1-2x</math> must be equal, | |
- | + | ||
{{Fristående formel||<math>4x^2 - 2x = 1 - 2x\,,</math>|<math>(*)</math>}} | {{Fristående formel||<math>4x^2 - 2x = 1 - 2x\,,</math>|<math>(*)</math>}} | ||
- | + | and also positive. We solve the equation <math>(*)</math> by moving of all the terms to one side | |
{{Fristående formel||<math>4x^2 - 1= 0</math>}} | {{Fristående formel||<math>4x^2 - 1= 0</math>}} | ||
- | + | and take the root. This gives that | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
Line 219: | Line 218: | ||
x = \frac{1}{2} \; \mbox{.}</math>}} | x = \frac{1}{2} \; \mbox{.}</math>}} | ||
- | + | We now check if both sides of <math>(*)</math> are positive | |
- | * | + | * If <math>x= -\tfrac{1}{2}</math> then both are sides are equal to <math>4x^2 - 2x = 1-2x = 1-2 \cdot \bigl(-\tfrac{1}{2}\bigr) = 1+1 = 2 > 0</math>. |
- | * | + | * If <math>x= \tfrac{1}{2}</math> then both are sides are equal to <math>4x^2 - 2x = 1-2x = 1-2 \cdot \tfrac{1}{2} = 1-1 = 0 \not > 0</math>. |
- | + | So the logarithmic equation has only one solution <math>x= -\frac{1}{2}</math>. | |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
- | + | Solve the equation <math>\,e^{2x} - e^{x} = \frac{1}{2}</math>. | |
<br> | <br> | ||
<br> | <br> | ||
- | + | The first term can be written as <math>e^{2x} = (e^x)^2</math>. The whole equation is a quadratic with <math>e^x</math>as the unknown | |
{{Fristående formel||<math>(e^x)^2 - e^x = \tfrac{1}{2}\,\mbox{.}</math>}} | {{Fristående formel||<math>(e^x)^2 - e^x = \tfrac{1}{2}\,\mbox{.}</math>}} | ||
- | + | The equation can be a little easier to manage if we write <math>t</math> instead of <math>e^x</math>, | |
{{Fristående formel||<math>t^2 -t = \tfrac{1}{2}\,\mbox{.}</math>}} | {{Fristående formel||<math>t^2 -t = \tfrac{1}{2}\,\mbox{.}</math>}} | ||
- | + | Complete the square for the left-hand side. | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
Line 248: | Line 247: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | which gives solutions | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
Line 255: | Line 254: | ||
t=\frac{1}{2} + \frac{\sqrt{3}}{2} \, \mbox{.}</math>}} | t=\frac{1}{2} + \frac{\sqrt{3}}{2} \, \mbox{.}</math>}} | ||
- | + | Since <math>\sqrt3 > 1</math> then <math>\frac{1}{2}-\frac{1}{2}\sqrt3 <0</math> and it is only <math>t= \frac{1}{2}+\frac{1}{2}\sqrt3</math> that provides a solution to the original equation because <math>e^x</math> is always positive. Taking logarithms gives finally that | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
x = \ln \Bigl(\,\frac{1}{2}+\frac{\sqrt3}{2}\,\Bigr)</math>}} | x = \ln \Bigl(\,\frac{1}{2}+\frac{\sqrt3}{2}\,\Bigr)</math>}} | ||
- | + | as the only solution to the equation. | |
</div> | </div> | ||
- | [[3.4 Övningar| | + | [[3.4 Övningar|Exercises]] |
<div class="inforuta" style="width:580px;"> | <div class="inforuta" style="width:580px;"> | ||
- | ''' | + | '''Study advice''' |
- | + | ||
- | + | ||
- | + | '''The basic and final tests''' | |
+ | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | ||
- | '''Tänk på att:''' | ||
- | + | '''Keep in mind that:''' | |
- | + | You may need to spend much time studying logarithms. | |
+ | Logarithms usually are dealt with summarily in high school. Therefore, many college students tend to encounter problems when it comes to calculations with logarithms. | ||
</div> | </div> |
Revision as of 16:57, 14 July 2008
Teori | Övningar |
Innehåll:
- Logarithmic Equations
- Exponential equations
- Spurious roots
Learning outcomes::
After this section, you will have learned to:
- Solve equations that contain logarithm or exponential expressions and which can be reduced to first or second order equations.
- Deal with spurious roots, and know when they arise.
Basic Equations
Equations where logarithms appear can vary a lot. Here are some examples where the solution is given almost immediately by the definition of a logarithm, that is.
![]() ![]() |
(We consider only 10-logarithms or natural logarithms.)
Example 1
Lös ekvationerna
10x=537 has a solutionx=lg537 .105x=537 gives5x=lg537 , i.e.x=51lg537 .3ex=5 Multiplication of both sides withex and division by 5 gives53=ex , which means thatx=ln53 .lgx=3 The definition gives directlyx=103=1000 .lg(2x−4)=2 From the definition we have2x−4=102=100 and it follows thatx=52 .
Example 2
- Solve the equation
( .10)x=25
Since the left-hand side is equal to10=101
2
( and the equation becomes10)x=(101
2)x=10x
2
10x 2=25.
x2=lg25 , ie.x=2lg25 . - Solve the equation
23ln2x+1=21 .
Multiply both sides by 2 and then subtracting 2 from both sides3ln2x=−1. Divide both sides by 3
ln2x=−31. Now, the definition directly gives
2x=e−1 , which means that3
x=21e−1 3=12e1
3.
In many practical applications of exponential growth or decline there appear equations of the type
where
and use the law of logarithms for powers
![]() |
which gives the solution
Example 3
- Solve the equation
3x=20 .
Take logarithms of both sideslg3x=lg20. The left-hand side can be written as
lg3x=x givinglg3
x=lg3lg20( 2
727).
- Solve the equation
5000 .1
05x=10000
Divide both sides by 50001 05x=500010000=2.
This equation can be solved by taking the lg logarithm of both sides of and rewriting the left-hand side as
lg1 ,05x=x
lg1
05
x=lg2lg1 05(
14
2).
Example 4
- Solve the equation
2x .3x=5
The left-hand side can be rewritten using the laws of powers giving2x and the equation becomes3x=(2
3)x
6x=5. This equation is solved in the usual way by taking logarithms giving
x=lg6lg5( 0
898).
- Solve the equation
52x+1=35x .
Take logarithms of both sides and use the laws of logarithmslgab=b lga
(2x+1)lg52x lg5+lg5=5x
lg3,=5x
lg3.
Collect
x to one sidelg5lg5=5x lg3−2x
lg5,=x(5lg3−2lg5).
The solution is
x=lg55lg3−2lg5.
Some more complicated equations
Equations containing exponential or logarithmic expressions can sometimes be treated as first order or second order equations by considering "
Example 5
Solve the equation
Multiply both sides by
Note that since
Simplify both sides of the equation
where we used ex=e−x+x=e0=1
Taking logarithms then gives the answer
![]() |
Example 6
Solve the equation
The term lnx=−lnx
where we can consider =1
Completing the square on the left-hand side
![]() ![]() ![]() ![]() ![]() ![]() |
We continue by taking the root giving
![]() ![]() |
This means that the equation has two solutions
![]() ![]() ![]() ![]() |
Spurious roots
When you solve equations you should also bear in mind that the arguments of logarithms have to be positive and that terms of the type
Example 7
Solve the equation
For the equation to be satisfied the arguments
![]() | ![]() |
and also positive. We solve the equation )
and take the root. This gives that
We now check if both sides of )
- If
x=−21 then both are sides are equal to4x2−2x=1−2x=1−2 .−21
=1+1=2
0
- If
x=21 then both are sides are equal to4x2−2x=1−2x=1−2 .21=1−1=0
0
So the logarithmic equation has only one solution
Example 8
Solve the equation
The first term can be written as
The equation can be a little easier to manage if we write
Complete the square for the left-hand side.
![]() ![]() ![]() ![]() ![]() ![]() |
which gives solutions
![]() ![]() |
Since 3
1
3
0
3
![]() ![]() ![]() |
as the only solution to the equation.
Study advice
The basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
You may need to spend much time studying logarithms. Logarithms usually are dealt with summarily in high school. Therefore, many college students tend to encounter problems when it comes to calculations with logarithms.