Processing Math: Done
Solution 2.1:1e
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_1e.gif </center> {{NAVCONTENT_STOP}}) |
|||
Line 1: | Line 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <center> [[Bild:2_1_1e.gif]] </center> | + | <!--center> [[Bild:2_1_1e.gif]] </center--> |
+ | If we use the rule for squaring <math>(a-b)^2 = a^2-2ab+b^2 </math> with <math> a=x </math> and <math> b=7, </math> we obtain directly that | ||
+ | |||
+ | :<math> (x-7)^2=x^2-2 \cdot x \cdot 7 + 7^2 = x^2-14x+49.</math> | ||
+ | |||
+ | An alternative is to write the square as <math> (x-7)\cdot (x-7)</math> and then multiply the brackets in two steps | ||
+ | |||
+ | <math> | ||
+ | \qquad | ||
+ | \begin{align} | ||
+ | (x-7)\cdot (x-7) &= (x-7)\cdot x - (x-7)\cdot 7 \\ | ||
+ | &= x\cdot x-7 \cdot x -(x\cdot 7 - 7\cdot 7) \\ | ||
+ | &= x^2 -7x-(7x-49)\\ | ||
+ | & \stackrel{*}= x^2-7x-7x+49 \\ | ||
+ | &= x^2-(7+7)x+49\\ | ||
+ | &= x^2-14x+49 | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | In the line that has been marked with an asterisk, we have removed the bracket and at the same time changed signs on all terms inside the bracket. | ||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Revision as of 09:35, 13 August 2008
If we use the rule for squaring
(x−7)2=x2−2 x
7+72=x2−14x+49
An alternative is to write the square as (x−7)
(x−7)=(x−7)
x−(x−7)
7=x
x−7
x−(x
7−7
7)=x2−7x−(7x−49)=
x2−7x−7x+49=x2−(7+7)x+49=x2−14x+49
In the line that has been marked with an asterisk, we have removed the bracket and at the same time changed signs on all terms inside the bracket.