2.1 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Line 72: Line 72:
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 2.1:3|Lösning a|Lösning 2.1:3a|Lösning b|Lösning 2.1:3b|Lösning c|Lösning 2.1:3c|Lösning d|Lösning 2.1:3d|Lösning e|Lösning 2.1:3e|Lösning f|Lösning 2.1:3f}}
</div>{{#NAVCONTENT:Svar|Svar 2.1:3|Lösning a|Lösning 2.1:3a|Lösning b|Lösning 2.1:3b|Lösning c|Lösning 2.1:3c|Lösning d|Lösning 2.1:3d|Lösning e|Lösning 2.1:3e|Lösning f|Lösning 2.1:3f}}
 +
 +
===Övning 2.1:4===
 +
<div class="ovning">
 +
Bestäm koefficienterna framför <math>\,x\,</math> och <math>,x^2\,</math> när följande uttryck utvecklas
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | <math>(x+2)(3x^2-x+5)</math>
 +
|-
 +
|b)
 +
|| <math>(1+x+x^2+x^3)(2-x+x^2+x^4)</math>
 +
|-
 +
|c)
 +
|| <math>(x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4)</math>
 +
|-
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 2.1:1|Lösning a|Lösning 2.1:1a|Lösning b|Lösning 2.1:4b|Lösning c|Lösning 2.1:4c}}

Revision as of 08:10, 31 March 2008

 

Template:Mall:Ej vald flik Template:Mall:Vald flik

 


Övning 2.1:1

Utveckla

a) \displaystyle 3x(x-1) b) \displaystyle (1+x-x^2)xy c) \displaystyle -x^2(4-y^2)
d) \displaystyle x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) e) \displaystyle (x-7)^2 f) \displaystyle (5+4y)^2
g) \displaystyle (y^2-3x^3)^2 h) \displaystyle (5x^3+3x^5)^2


Övning 2.1:2

Utveckla

a) \displaystyle (x-4)(x-5)-3x(2x-3) b) \displaystyle (1-5x)(1+15x)-3(2-5x)(2+5x)
c) \displaystyle (3x+4)^2-(3x-2)(3x-8) d) \displaystyle (3x^2+2)(3x^2-2)(9x^4+4)
e) \displaystyle (a+b)^2+(a-b)^2

Övning 2.1:3

Faktorisera så långt som möjligt

a) \displaystyle x^2-36 b) \displaystyle 5x^2-20 c) \displaystyle x^2+6x+9
d) \displaystyle x^2-10x+25 e) \displaystyle 18x-2x^3 f) \displaystyle 16x^2+8x+1

Övning 2.1:4

Bestäm koefficienterna framför \displaystyle \,x\, och \displaystyle ,x^2\, när följande uttryck utvecklas

a) \displaystyle (x+2)(3x^2-x+5)
b) \displaystyle (1+x+x^2+x^3)(2-x+x^2+x^4)
c) \displaystyle (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4)