Loading http://wiki.math.se/jsMath/extensions/bbox.js
Solution 1.1:1d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 1.1:1d moved to Solution 1.1:1d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
{{NAVCONTENT_START}}  | {{NAVCONTENT_START}}  | ||
| - | + | Just as in exercise c,  we calculate the innermost bracket   | |
:<math>3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5</math>  | :<math>3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5</math>  | ||
{{NAVCONTENT_STEP}}  | {{NAVCONTENT_STEP}}  | ||
| - | + | and work our way successively outwards,  | |
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5</math>  | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5</math>  | ||
{{NAVCONTENT_STEP}}  | {{NAVCONTENT_STEP}}  | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,</math>.  | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,</math>.  | ||
| - | + | All that remains is to combine the terms from left to right  | |
| - | + | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5</math>  | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5</math>  | ||
{{NAVCONTENT_STEP}}  | {{NAVCONTENT_STEP}}  | ||
Revision as of 12:42, 13 September 2008
Just as in exercise c, we calculate the innermost bracket
- \displaystyle 3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5
 
and work our way successively outwards,
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5
 
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,.
 
All that remains is to combine the terms from left to right
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5
 
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \secondcbox{#FFEEAA;}{\,3-(-3)\,}{3+3}-5
 
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \secondcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5
 
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 1.
 
